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PREFACE

The purpose of this book is to provide practical instruction in the
basic principles of analogue computing by following a course of
selected problems. The choice of such problems is based on experi-
ence, gained over several years, in teaching students of engineering
and science in technical colleges and grammar school sixth form
pupils.

Successful analogue computation requires a good knowledge of the
qualitative behaviour of solutions, together with a full appreciation
of the capabilities of computing units. The theoretical background of
such knowledge is referred to only briefly as it is felt that it is more
than adequately treated in the books listed in the bibliography.
Instead, emphasis has been placed upon the practical techniques
which need to be mastered in order to make full use of the
analogue computer. It is hoped such mastery will be attained by
solving the problems which are arranged in the form of laboratory
experiments. A routine procedure has been developed to solve these
problems and, in gach experiment, sufficient detail is given to enable
students to programme the computer. At the end of each chapter, a
supplementary list of problems and answers is given.

As there is a large number of different types of electronic analogue
computers in use, no attempt has been made to describe the operation
of these machines. It is expected that students will become familiar
with their own machine and have access to the appropriate operator’s
manual. The reference voltages available in computers depend upon
whether the machine is a thermionic valve or a transistorized model.
Accordingly, a standard method has been adopted of using normal-
ized voltages, i.e., expressing all voltages as a fraction of the reference
voltage. This enables the various methods described in the text to be
directly applicable to all analogue computers.

The material in the book covers the needs of most first courses
in analogue computer programming at college level. Care has
been taken to restrict the problems to those involving as few com-
puter units as possible, thus obviating the need for large capacity
computers. It is felt that, if the theoretical side is to be backed by
practice in the laboratory, then the major part of the course will
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embody the work on linear operations involved in solving linear
differential equations with constant coefficients. Usually, in the time
remaining, only a little work on non-linear operations is possible
if the student is set the task on the computer himself. The authors,
therefore, decided to confine their attention solely to the various
uses of the multiplier and have not discussed the use of further non-
linear devices.

Since the representation of physical systems by transfer functions
plays an important role in industrial computation, an elementary
review of the principles involved has been included in chapter 6 with
several supporting examples.

Regarding nomenclature, all resistance values, R, used in diagrams
are given in megohms, and capacitances, C, in microfarads. Conse-
quently, all products, RC, occurring have the appropriate dimensions,
i.e., seconds. The symbols used in the figures are shown on page xi
and, although there is still a variety of so-called ‘standard symbols’,
the authors have listed those they have found in practice to be the
most commonly used.



Preface

CONTENTS

Symbols Representing Basic Computer Units

Chapter 1 Basic Linear Units

1.1
1.2
1.3
1.4
L5
1.6
1.7

The Operational Amplifier

Use as a Summer

Use as an Integrator

The Computing Potentiometer

Experiment 1. Use of Summers

Experiment 2. Use of Integrators

Experiment 3. Simple Applications on Integration

Chapter 2 Amplitude Scaling

2.1
2.2
2.3
24

Scale Factors

Experiment 4. A Simple Problem in Dynamics
Experiment 5. The Discharge of a Capacitor
Experiment 6. A Problem in Particle Dynamics
with Variable Acceleration

Chapter 3 'The Solution of Problems Involving Ordinary

31
32
33
3.4
35
3.6

37

3.8

Differential Equations with Constant Coefficients

Introduction :
First Order Differential Equations
Second Order Differential Equations
Estimation of Scale Factors

The Equal Coeflicient Rule

Experiment 7. Solution of a First Order Differential

Equation

Experiment 8. Solution of a Second Order
Differential Equation

Experiment 9. Generation of Sine and Cosine
Functions

>
=.

[« NNV SO FURE & R



viii

3.9

CONTENTS

Experiment 10. A Second Order Differential Equation
with Variable Damping Coefficients

3.10 Experiment 11. Solution of Simultaneous Differential

Equations when Knowledge of the Problem Variables
is Available

3.11 Experiment 12. Solution of Simultaneous Differential

Equations when Prior Knowledge of the Variables is
not Available

3.12 Experiment 13. Forced Mechanical Oscillations
3.13 Experiment 14. Coupled Circuits

3.14 Experiment 15. The Force Developed by a Hawser
3.15 Further Exercises

Chapter 4 Time Scaling

4.1
42
43
44
4.5

4.6
4.7

4.8
4.9

Introduction

Methods of Time Scaling

Summary of Method of Solution of a Differential
Equation

Experiment 16. Slowing down a Second Order
Differential Equation

Experiment 17. Speeding up a First Order
Differential Equation Given in Problem Form
Experiment 18. Xenon Poisoning in a Nuclear Reactor
Experiment 19. Simultaneous Differential
Equations Requiring Time Scaling

Experiment 20. A Suspension Problem.

Further Exercises

Chapter 5 The Use of Non-Linear Units

5.1
5.2
5.3
5.4
5.5
5.6
5.7

5.8
59

Introduction

The Multiplier

The Dividing Circuit

The Squaring and Square Rooting Circuits
Experiment 21. The Use of a Multiplier and Divider
Experiment 22. A Further Example on Division
Experiment 23. Use of a Multiplier to Perform the
Square-Root Operation

Experiment 24. Solution of Mathieus’ Equation
Further Exercises

27

31

34
36
39
41
43

45

45
46

48

48

50
51

53
55
58

60

60
60
62
63
64
66

67
68
70



CONTENTS

Chapter 6 The Use of Transfer Functions

6.1
6.2
6.3

6.4
6.5
6.6
6.7
6.8
6.9

Transfer Functions

Simple Block Diagrams

The Use of RC Networks to Simulate

Transfer Functions

Checking the Accuracy of Transfer Functions
Experiment 25, The Differentiator

Experiment 26. The Simple Lag Transfer Function
Experiment 27. The Quadratic Transfer Function
Experiment 28. The Synthesis of Transfer Functions
Experiment 29. Simulation of Automatic Control

6.10 Further Exercises

Bibliography

Index

75

75
78

80
82
84
87
90
92
95
98

103
105



SYMBOLS REPRESENTING Basic CoMPUTER UNITS

Component Symbol Equivalent Operation
e
(- KR Pot. No. 2
Potentiometer €; e € € = Ke; .
0 K<
KR -
K —
o o1 €
High gain . 1 . 1 Amplifier No. 3
amplifier 2 o 2 o1 €| o= —uley + ey + 10¢y)
e3© e
1 1
e 0———1 € f
Sum{ning ez pro— 3 e e = —(e; + €; + 10ey)
amplifier 10 €o 01 €o
€3 o—e e q )
MU 01
ey : % 1
Summing 1
: €2 g
xn}eg{a?ctr 10 €0 e e = —| (e, + &5 + 10e;) et + K
with initial &3 1 )
condition ez
01 €o
-1M.u} %
K
I’e
B, e, |2
: Ry 1 e ]
ervo- . o ' e; = +ee.
multiplier e [ERe oo
€o
= e Ry
L =
Electronic 2, —» N > o = —ee
multiplier 1 €o €1 €o ° "2
PR | €1 ———a

Arbitrary B — — X o]
function F F eq = F(x)
generator \+ X°——1 €o + X O €y

Note: All voltages are in Machine Units, i.e. normalized. The
electronic multipliers and function generators are available
in several forms and it is usually sufficient to use the symbols
given in the second column.




CHAPTER 1

Basic Linear Units

1.1 The Operational Amplifier

The most important computing unit is the operational amplifier. This
consists of a d.c. amplifier together with associated input and feed-
back impedances (see Figs. 1.1 and 1.2). The d.c. amplifier is a
thermionic valve or transistorized unit capable of amplifying voltage
signals. Several mathematical operations may be performed using
the operational amplifier. The principal ones are (i) summing a
number of variable voltages and (ii) producing an integral with
respect to time of this sum.

1.2 Use as a Summer

The d.c. amplifier is usually designed to have a negative gain, —pu,
where p is very large, being approximately 10® at zero frequency. If
¢ is the voltage at the amplifier input grid, the output voltage e, is

ey = — e, (1.1)

€3

Fig. 1.1

The current flowing into the grid of the first stage of the amplifier
shown in Fig. 1.1 is so small that it may be neglected compared with
the currents iy, i,, i; and i;. Hence Kirchhoff’s first law gives

i1+i2+i3+if=0 (1.2)
and hence by Ohm’s law

€1=0 (=9 (=9, (=9 _, (3
R, R, R, R, '
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Inherently ey, e,, e, €,, are voltages of the same order of magni-
tude. As p is very large compared with unity it can be seen from
Eq. (1.1) that ¢ is very small compared with e,, and hence with the
other input voltages. Assuming that ¢ is zero a very good approxima-
tion to Eq. (1.3) is

& € L8 b 1.9
R1 Rz R3 Rf
giving
ey = — &el + &ez + &63 . (1-5)
R, R, R,

The quantities R,/R,, R,/R,, etc., are referred to as the gains
associated with the voltages e,, e,, etc., respectively. Some computers
have a built-in system of resistors providing fixed gains, whilst others
are provided with external plug-in resistors from which a wide range
of gains may be obtained. The number of inputs available usually
varies from about five to ten.

Attention is drawn to the presence of the minus sign which results
from the use of an operational amplifier. If the feedback resistor
and all input resistors are equal a simple sign reversal of the sum
of the input signals is produced.

1.3 Use as an Integrator

c
PR ——
ey 0‘\/\/\/\/\/\—1 i

e OWW\/W /\ o
-

i3 R;
€3 OMAANMA——
Fig. 1.2

In Fig. 1.2 if Q is the charge on the capacitor C at any instant, then

. do d
iy = i C;t(eo €) (1.6)
and
h+ i +i3+i,=0, (W))
thus

e, —€& e, —¢€  e3—¢& d
+ + + C-=(eq—¢) =0. 1.8
< o £ (e = 9) (1.8)
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Again assuming that ¢ = 0,

ey e e ~de o

19

Solving for de,/dt and integrating with respect to ¢ gives the output
of the integrator at any instant ¢ to be

t
€y €2 €3
- + 2 4 8 )ty oel0 1.10
e L(czzl 2 CR3> o0  (110)

Note again the sign reversal and the gains associated with each
input voltage, i.e. 1/CRy, 1/CR; and 1/CR;. The term e,(0) appearing
in Eq. (1.10) represents the initial value of e,. All integrating units
have provision for inserting the initial value of the output voltage.
This usually involves feeding the reference voltage via a potentio-
meter, set at the appropriate value, to a specific socket on the inte-
grator. It must be emphasized that the correct initial voltage is
obtained by measuring the output of the integrator and adjusting
the potentiometer to give the desired voltage.

1.4 The Computing Potentiometer

The computing potentiometer has two uses. First, by applying the
computer reference voltage to the potentiometer input, any fraction
of this voltage may be obtained, and second, any variable voltage
may be multiplied by a positive constant less than or equal to unity.

Care must always be taken when setting potentiometers to correct
for loading errors. These become significant when the potentiometer
load resistance is not large compared with the resistance of the
potentiometer.

Thus to perform the operation e, = 0-3eg, where ey is the refer-
ence voltage, it is not sufficient to set the potentiometer and obtain
0-3ey, at its output as shown in Fig. 1.3 (a).

F Other _‘|
eg 0:3er €gr P | u;lit; :
o—{ — o—{ =W of the

1 PRI |

circuit
03 03 Y 1

Fig. 1.3

The correct procedure is to set up the complete circuit and adjust
the potentiometer so that its output under load conditions reads
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0-3eg. Figure 1.3 (b) shows an example where the potentiometer is
followed by an integrator, the point P being where voltage measure-
ment is made.

In the more modern types of equipment this potentiometer setting
is easily accomplished using a built-in nulling device.

Too much care cannot be given to the question of loading, as
incorrect setting of potentiometers is a major source of error in
analogue computation.

The reference voltage in computers is usually +100 volts or 10
volts; the former being found in thermionic machines and the latter
in transistorized equipment.

To standardize programming the following convention will be
used throughout the rest of this book.

The reference voltage will be referred to as 1 Machine Unit
(M.U.) and all other computing voltages will be taken as fractions
of this. Thus in a 100-volt machine a computing voltage of 82 volts
will be 0-82 M.U. and in a 10-volt machine 7-3 volts will be 0-73 M. U.

1.5 Experiment 1. Use of Summers

1. Set up an operational amplifier to act as a summer. This is
usually accomplished by making good a number of connecting links.
Details are given in the appropriate computer manual.

2. From the computer reference voltage obtain, with the aid of
potentiometers, three voltages 0-05, 0-1 and 0-12 M.U.

3. By suitable choice of input and feedback resistors generate a
voltage,

E=—(10x+y+2 Ly

where x, y, z are 0-05, 0-1, 0-12 M.U. respectively. The circuit is as
shown in Fig. 1.4. By direct calculation E should be —0-72.
4. Generate
E=x— 10y + z. 1.12)

Equation (1.12) may be written £ = —(—x + 10y — z) from
which it may be seen that — x, +y, —z are the required input voltages
(see Eq. (1.5)). The voltages —x and —z may be obtained by supply-
ing the appropriate potentiometers with —1 M.U.

5. Generate

E= —(6x + 13y -+ 24z2). (1.13)

The circuit is shown in Fig. 1.5.



BASIC LINEAR UNITS 5

10

Fig. 1.4 Fig. 1.5

When the gain factor required is non-standard, e.g. 1-3, use the
next higher standard value, 10 say, and precede this input by a
potentiometer adjusted to offset this increased gain. The setting will
be 0-13 in this case. The overall gain is the product of the potentio-
meter ‘gain’ and the summer gain.

Theoretically, potentiometers 1, 2 and 3 will be set at 0-6, 0-13 and
0-24, but to avoid loading errors it is essential to carry out the test
procedure described earlier for computing potentiometers.

6. Generate

() E= —@x+ 17y + 2:12) (1.14)
(i) E=43x — 37y + 53z (1.15)
(iii) E= —7x — 5y + 28z. (1.16)

7. Check the computed values of E by direct calculation.

1.6 Experiment 2. Use of Integrators

1. Set up an operational amplifier to act as an integrator. (Consult
the operator’s manual for the appropriate connections.)

2. From the computer reference busbar obtain with the aid of
potentiometers, the three quantities 0-05, 0-1 and 0-2 M. U. (referred
to as x, y and z) respectively.

3. Generate

t
E= —J 0-1 dt M.U. (1.17)

g
Using the circuit of Fig. 1.6.

1

1M.U. °—Q~\/\/;/\N \/ E

01

B.A.C.T.—2
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(Note: (i) The initial value of E is zero, i.e. the initial condition of the
integrator is set to zero. (ii) The input to the integrator, 0-1 M.U.,
should be checked under loading. (iii) In machines where integrators
have fixed gains, an input provided with a gain of unity is selected.)

4. By means of the initial conditions facility already mentioned,
generate

t
E=10 —f 0-1dt M.U. (1.18)
0
5. Generate
t
(i) E= —J (x +y + 2z)dt (1.19)
0
t
(iiy E =J (—10x + y + 0-1z) dt. (1.20)
0
t
(iii) E = —f (3x + 0-5y + 0-082) dt. (1.21)
4]

t
(iv) E= — 025 —f (32x — 04y + 0-62) dt.  (1.22)
0

6. In each case, apply the signal E to the input of a pen recorder
calibrated so that 1 M.U. = full-scale deflection. From the known
values of x, y and z check, by calculation, the computed values of E.

In the sections to follow full use will be made in diagrams of the
standard computing symbols shown in the frontispiece. This system
makes for easier understanding of the more complex computer
circuits whilst providing all the necessary information.

1.7 Experiment 3. Simple Applications on Integration

1 —01t 1 0-01£2

1M.U.
01 02

Fig. 1.7

1. Using the circuit shown in Fig. 1.7, generate the functions
y = —0-1¢ M.U. and y = 0-01z> M.U. where 0 < 7 < 10s.

Record the two functions by connecting the voltages representing
—0-1¢ and 0-01¢2 to the inputs of a pen recorder calibrated so that
1 M.U. gives full-scale deflection. ‘

Some computers have a built-in circuit termed the ‘HOLD’ circuit
which can arrest the computation at any predetermined instant. This
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provides a means of measuring the output signals without incurring
the dynamic errors of a continuous reading voltmeter.

The operator’s manual will give full details of the use of the ‘HoLD’
circuit.

The accuracy of the solution can be checked arithmetically.

2. A practical application of the above is the examination of the
motion of a particle travelling with a uniform acceleration. If this
acceleration is 0-01 ft/s? and the initial velocity is 0-05 ft/s the
velocity v ft/s and the distance s ft after any time ¢ seconds are given
by

v = 0-05 + 0-01¢, (1.23)
s = 0:05¢ + %.0-01¢2, (1.249)
As
t
v =J adt + 005 (1.25)
°

where g is the acceleration and
t
s = f vdt (1.26)
0

a circuit arranged as shown in Fig. 1.8 will produce the desired
solution.

005
Fig. 1.8

Note that the output of amplifier 1 is —v and the solution should
be interpreted accordingly.

Representing a velocity of 1 ft/s by 1 M.U. and a distance of 1 ft
by 1 M.U. record the signals —v and s on a pen-recorder calibrated
so that 1 M.U. gives full-scale deflection. Once again the HOLD
facility may be utilized as an alternative means by which the solution
may be measured.

The accuracy of your solutions may be checked by putting values
of ¢ in Eqs. (1.23) and (1.24).



CHAPTER 2
Amplitude Scaling

2.1 Scale Factors

The magnitude of each dependent variable of a problem is repre-
sented by a voltage at the output of a computing element. This must
never exceed 1 M.U. otherwise overloading occurs, warning of which
is usually indicated either visually or audibly on the computer.

The constant relating the magnitude of the voltage to one unit
of the problem variable is called the amplitude scale factor. For
instance in a problem involving a velocity which varies from 0 to a
maximum value of 25 ft/s a scale factor K is introduced so that

1 M.U. = K.25 ft/s,
ie. K = 3 M.U./ft[s.

The output of the computing element is labelled v/25 where v is
the velocity. Any voltage at this output, say 0-6 M.U., is translated
into the corresponding velocity by multiplying by 25. Hence in the
given case the velocity is 0-6 x 25 = 15 ft/s.

The approximate maximum values of the problem variables are
usually obtained from a knowledge of the physical system under
examination. The scale factors for each variable are then obtained
as the ratio '

1 M.U./Estimated Maximum Value.

In practice these estimates are often too high or too low, a fact
which is shown by the output voltages from the various computing
units. It may thus be necessary to re-scale the problem several times
before a satisfactory solution is obtained.

These principles are outlined in the following experiments,

2.2 Experiment 4, A Simple Problem in Dynamics

A particle moving under a uniform acceleration of 2 ft/s? starts with
a velocity of 10 ft/s. The velocity v and distance s after time ¢ seconds
are given by
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v=2t+ 10 2.1
s =1%+ 10t (2.2)

where v is in ft/s and s in ft.

Obtain graphs of v against ¢ and s against ¢ over a period of 4 s,
using the computer and suitable recording apparatus.

1. Before scaling these equations the maximum values of v and s
must be estimated. In this simple case they can be calculated exactly
as 18 ft/s and 56 ft respectively.

2. The scale factors to produce a maximum of 1 M.U. at the out-
puts representing v and s are given respectively by

1 MU. =K,;.18 and 1M.U. = K,.56,
ie. K, =% MU./ft/s and K, = - M.U./ft

These values for K; and K,, while permitting full use of the com-
puter dynamic range, would necessitate awkward arithmetic com-
putation in the interpretation of the computer voltages. This may be
prevented by rounding off the scale factors to slightly lower values.
Although this does not make full use of the dynamic range the
resultant loss in accuracy is usually negligible.

A suitable choice of scale factors is

K, = 1/20, K, = 1/60.

—-1M.U.

—1M.U,

05
Fig. 2.1

3. The computer circuit for this problem is as shown in Fig. 2.1.
Note that the voltages generated on the machine are labelled v/20
and —s/60. The scaled equations connecting the variables are now

0/20 = 1/10 + 1/2 (2.3)
5/60 = £2/60 + 1/6. (2.4)

These are the Machine Equations and are obtained by multiplying
Egs. (2.1) and (2.2) by K, and K, respectively.
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4. As in Experiment 3 the simulation of Eq. (2.3) requires the use
of an integrator. Its gain G, and initial condition setting /; may be
calculated as follows.

As the output has to be v/20 then

v t
— = =G e dt + 1 2.5
n= =G| evdi 1 @5
v [t 1
but from Eq. (2.3 — = | dt + =
utfrom Bq. 2.3) 55 =15] 43
therefore Giey = —i%M.U
1
and I =£M.U.

The product G,e; may be chosen in many different ways; in

Fig. 2.1, e, has been taken as —1 M.U. and G, as 116

.The distance s is related to the velocity v by the equation

t
s='[ vdt + 5

0

where s, is the initial value of s (zero in this example).
As v/20 is available as an input, simulation of Eq. (2.4) requires
the use of a further integrator with initial condition zero. Its operation

is described by
t
L T EA YA 2.6)
60 0 3\20

The minus signs take account of the inherent sign reversal of the

. .. 1
integrator whose gain is seen to be 3

Assuming only standard gains of 0-1, 1-0, 10-0, etc., to be available
this value may be obtained by selecting a gain of 1-0 and preceding
integrator 2 by a potentiometer set at 0-333 (remember to allow for
loading of this potentiometer).

5. The desired graphs will be obtained by recording the outputs
from integrators 1 and 2 on a chart so calibrated that 1 M.U. gives
full-scale deflection. This will be equivalent to 20 ft/s and 60 ft for
v and s respectively.
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Check these graphs by inserting one or two values for ¢ in Egs.
(2.1) and (2.2).

2.3 Experiment 5. The Discharge of a Capacitor

A capacitor C has initial charge Q, and is discharged from time
t = 0 through a resistance R. Determine the current flowing in the
circuit after 6 s in the case where R = 3M, C = 2uF and Q, =100
coulombs.

1. The laws relating the voltage V, current i, and charge Q at time
t seconds are

L _dQ _
i = i VIR .7

and

V= Q|C. (2.8)
Hence

di ,

5 i/RC. 2.9
Initially,

ip = Qo/RC. 2.10)

2. Since energy is lost the maximum numerical value of the current
is :
Qo/RC = 100/6 amp.
The maximum scale factor for i is therefore

K = 1§ M.U./amp.

To simplify circuit details and to facilitate graph scales take
K = 3.
3. The scaled equation corresponding to Eq. (2.9) is thus

dfi\_ 1/i

3}(56) B 6(20) (21D
4o _.IJW<L'> dt + (-’) ‘ (2.12)
20 6,120 20/,

Solution of Eq. (2.11) on the computer may be obtained using the
circuit of Fig. 2.2,

therefore

This is obtained by first considering the output of the integrator.
If this is taken as /20 then feeding back this voltage and integrating
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according to Eq. (2.11) the desired result will be achieved. To
accomplish this, a gain of 1-0 is used in the integrator in conjunction
with a potentiometer set at 0-167. The initial value of i being 100/6,
that of i/20 is 5/6 and is obtained using a potentiometer set at 0-833.

if20

0-167

—1M.U.
0-833

Fig, 2.2

4. Record the solution over a period of about 10 s on a recorder
chart calibrated to give a full-scale deflection for 1 M.U. The value
of the current flowing after 6 s can then be read from the graph.

5. Obtain the solution to the same problem with C half its original
value. (Hint: Choose a new scale factor for i and adjust the potentio-
meters accordingly.)

2.4 Experiment 6. A Problem in Particle Dynamics with
Variable Acceleration

A particle moves in a straight line with an acceleration proportional
to time ¢ and directed away from a fixed point O on the line. The
acceleration is 1 ft/s®> when ¢ = 1s and the particle starts from a
point P, such that OP = 25 ft, with a velocity 18 ft/s towards O.
Obtain the graphs of velocity v and distance x against time ¢.
Find v and x when ¢ is 8 s, and the distance covered when the velo-
city is zero. After how many seconds does the particle reach O?
1. The equations representing the motion are

dv
=y 2.13
7 (2.13)
b= J Du 18 (2.14)
o di
t
x =f vdt + 25 (2.15)
0

where x, v and dv/dt are measured positively in the direction OP.
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2. In this problem the greatest numerical values of x, v and dv/dt
can be obtained by direct solution of the equations. If ¢ does not
exceed 10 s these maximum values are 47 ft, 32 ft/s and 10 fi/s?

respectively.
3. The maximum scale factors are:

for %l;, K, = {5 M.U./fi/s*

forv, K, =55 MU/t/s
for x, K;= 4% M.U/M.
Suitable working values are:
K, = 5 M.U./ft/s?
K, = ¥ M.U./ft/s
K; = 5% MU/t

4. The machine equations are:

ldv_lt
104t 10
t
1, M _ldv, 18
50 5], 10dt 50
t
lx=— —ivdt+2—5
50 o S0 50

(2.16)

217

(2.18)

5. The computer circuit to solve these equations is as shown in

Fig. 2.3. Notice the use of a sign reverser to obtain -+ x/50.

6. Record the outputs from integrators 2 and 4 and hence deter-

mine the solutions of the problem.

+1M.U. 1 fdv
10\ dr v v




CHAPTER 3

The Solution of Problems Involving Ordinary
Differential Equations with Constant Coefficients

3.1 Introduction

Very many physical problems may be represented by mathematical
models in the form of differential equations. It must be pointed out
however, that in practice, only approximate representation of
physical systems by such models is possible. Nevertheless, much
important information may be obtained from the use of differential
equations and their solution.

In order to facilitate greater understanding of the methods of
solution involved in the experiments of this chapter a brief review
of the nature of the solutions and method of programming for first
and second order differential equations follows.

3.2 First Order Differential Equations

The general first order differential equation with constant co-
efficients is
ax + bx = f(t) (3.1

where a and b are constants and f(¢) is an arbitrary function.
This equation has the complete solution

x = Complementary Function (C.F.) + Particular Integral (P.L.).

The particular integral in general takes the form of f(¢). The com-
plementary function is the general solution of Eq. (3.1) when f(z) = 0,
and is

b
x = Ade . (3.2)

If b/a is positive the magnitude of the C.F. decreases with in-
creasing ¢, while if b/a is negative it increases.
Equation (3.1) may be re-arranged

=il (3.3)
a a
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x = —J‘t[éx - c—llf(t)] dt + xg (3.4)

ol @

Hence

where x, is the initial value of x.

The computer circuit (Fig. 3.1) used to solve Eq. (3.4) will thus
consist of an integrator supplied with the appropriateinitial condition
and fed with inputs x and —f(¢). The latter is obtained from a suit-
able circuit (not shown) and the former from the output of the in-
tegrator itself.

1
L x

bla

X —Xo

Fig. 3.1

3.3 Second Order Differential Equations

The general linear second order differential equation with constant
coefficients is of the form

ax + bx + cx = F(1). (3.5)

When the coefficients a, b, ¢ are all positive this equation represents,
ideally, many common physical phenomena, e.g. a spring oscillating
in a damping fluid. '

Equation (3.5) may be written more conveniently in the form

%+ 2w + oix = f(f) (3.6)

where { and o, are constants which play a significant part in the
nature of the solution of the equation. Once again the complete
solution consists of the sum of a particular integral and a com-
plementary function. ’

The particular integral, in general, assumes the form of f{(z), and
the complementary function is the general solution of Eq. (3.6)
when f(¢) = 0 and is

(i) x=Asinwtfor{ =0.

(i) x = e %4 cos w,/(1 — {*)t + Bsin w,/(1 — ()]
for{ < 1.

(iii) x = e™®" (4t + B)for { = 1.

(iv) x = e o[ Aeon/@ Dt | Bemow @=L for ¢ > 1.
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These results are illustrated in Fig. 3.2, the wave forms being
termed (i) undamped, (ii) under-damped, (iii) critically-damped and
(iv) over-damped.

{ which clearly controls the rate of decay of stable solutions is
called the Damping Ratio. Negative values of { lead to exponential
terms whose magnitude increase indefinitely with ¢ and hence con-
tribute to unstable solutions.

w, is the angular frequency in radians per second at which oscilla-
tions occur when { = 0 and it is defined as the undamped natural
frequency. In the case where 0 < { < 1 the actual frequency of
oscillation w is given by

0 =w,/0-%. 3.7

The actual period of oscillation is 2r/w seconds.
Equations such as (3.5) are solved on the computer by successive
integration as follows. Solving for the highest derivative present

f= =056 FO (3.8)
a a a
After one integration
t f
x=—f <§x+—cx-—@)dt+5co (3.9)
o\a a a

where X, is the initial value of X.
Integrating again

t
X = —f — Xdt + Xxq. (3.10)

0
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The computer circuit to solve Eq. (3.5) is developed by first
considering Eq. (3.9). As illustrated in Fig. 3.3 this is accomplished

! 1
Exa 1 %
« _Fop—

a

_-*0

Fig. 3.3

by summing the three quantities appearing on the right-hand side of
(3.9) and integrating this sum.

The sign change in passing through the integrator gives +X as
the output. x is produced from this by use of another integrator.

The output of the first integrator, being +x, is directly available,
after suitable multiplication, for the input signal. The output from
the second integrator must be sign inverted before it can be made
available for the input +(c/a)x and the other signal —F(¢)/a is
obtained from within the computer.

Figure 3.4 shows the completed circuit in unscaled form.

_Fo

Fig. 3.4

3.4 Estimation of Scale Factors

It must be emphasized that there is no simple method for estimat-
ing the maximum values of the variables and their derivatives in
differential equations. Consideration must be given both to the
initial conditions and the value of the function f(¢) occurring on the
right-hand side of the equation.

For instance in the first order Eq. (3.1) if f(¢) = 0
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i = b G.11)

and the complete solution is
b

X = Xxpe @ (3.12)

where x, is the initial value of x.
If b/a is positive, the greatest numerical value of x, |x|,,, is |xo| and
b
x| .
a |m

(3.13)

[l =

A more detailed application is given in Experiment 7.
In the second order Eq. (3.6), when f(r) = 0, { = 0 and x = x,,
X = Qat? = 0then
[ln = @nlx} (3.14)
%] = 0[] (3.15)
where |x|,, = |x|-
When 0 < { < 1 the values of |%|,, and ||, will be less than those
given in Eqs. (3.14) and (3.15), the corresponding relations being
[X]m < @]], (3.16)

%] < @?|x], (3.17)
where © = w,/(1 - {?).
As will be shown in subsequent experiments these results provide a
rule of thumb method for estimating the maximum values of the
problem variables.

For a differential equation of any order the following empirical
rule suggested by A. S. Jackson in his book Analog Computation
may be used to obtain estimates of the maximum values of x and its
derivatives.

3.5 The Equal Coefficient Rule
Consider the nth order differential equation

ax® + a,_ x4+ x® toagx =) (3.18)
wherex‘”sgforr =1,2,...,n
dr

For simplicity take zero initial conditions and
f()=0 whent <0
f{t) = A, a constant, when ¢ = 0.
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With these conditions the following results may be obtained from
Eq. (3.18)

x® = Ala, (3.19)
and 1
X, = 24/a, (3.20)

where x,, and x® are maxima again referring to absolute magnitude.
Dividing each derivative by its maximum value, Eq. (3.18)
becomes on re-writing,

(n) (n—1) (1)
x _ x x
A + x"" Vg, _, et ax( =5

A finy .
+ 2A{2A/ao} = f(1). (3.21)

This is called the Normalized Equation and the quantities in
brackets the Normalized Variables. For instance x‘V/x{! is the
normalized first derivative and will not exceed the value 1. The
estimates for the maximum values x{, x2, ..., x®~1 are then
determined by making the coefficients of the normalized variables
equal, with one exception; the coefficient of (x/x,,) will be twice that
of the other coefficients.

One restrictive condition applies. The values of x{M, ..., x{®
must form an increasing or a decreasing sequence.

The application of this rule is shown in the following example,

Consider the equation

X+ 2% + 9% + 18x = f(1) 3.22)
with x=x=X=0 at t=0
and where f(¢) = Ofor t < 0, f(t) = 36 for ¢t = 0.
(@) From Egs. (3.8) and (3.9), X,, = 36
x, = T2/18.

(b) The normalized equation thus becomes

% " % . x X (=
36{3T/l} + xm.2{x—m} + xm.9{}c;} + 72{72/18} = 36. (3.23)

(c) For equal coefficients of the normalized variables (with the
exception of x/x,,) ’

36 = 2%, = 9%,

hence x,, = 4, X,, = 4, ¥,, = 18 and X,, = 36.
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These agree very well with the actual maximum values which are:
x =302, % = 3-85, X = 10-34 and X = 36.

Once the maximum values of the dependent variable and its
derivatives have been found, the corresponding scale factors can be
evaluated and the original differential equation written in a scaled
form.

To do this, each problem variable is multiplied by its scale factor,
and the original differential equation re-written in terms of these new
variables. Since the scale factor for any variable is calculated from
the relation

Scale factor = 1 /Estimated Maximum Value

it will be noted that t]?gse nev}‘..variables are the normalized variables.
Hence the scahdtl equation fs?equivalent to the normalized equation.

- The scale®equatidhsi¥solved for the highest scaled derivative as in
Eq. (3.8), opeing#fration performed, and the L.H.S. rescaled for the
lower‘orderiwative. This new equation, suitable for execution on

_the computer’ is the Machine Equation. In the case of the previous

example (Eq. (3.22)) the scaled equation is

X (EN_ (X (¥ +f(_t) (3.24)
36 18 4 2 36 '

and the machine equation is

E__ f t[z(i) + 2(’_‘> + 2(5) —@] dt + (l) (3.25)
8~ | \is 4 2) 718 18),

where (¥/18), is the value of ¥/18 when ¢t = 0.

In general since the highest order derivative (in this case X) is not
present in the machine equation, its scale factor is not needed for the
computer circuit. Only occasionally is a graph of this function against
t required; in this instance the scale factor is used to enable the
appropriate function to be generated.

The following experiments are suggested in order to develop these
methods of preparing differential equations for solution on the
computer.

3.6 Experiment 7. Solution of a First Order Differential Equation

Given that
2+ x=0 (3.26)
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and x = 50 when ¢ = 0 obtain a graph of x against ¢ over a period
of 10s.

1. As the coefficient of x is positive the solution of Eq. (3.26) is an
exponential decay (compare Eq. (3.2)). The greatest numerical value
of x thus occurs when ¢ = 0, i.e. |x]|, = 50.

Using the relationship given in Eq. (3.13), |x|m = 25,

2. The scale factors for x and X are respectively

— 1 |
Ky =35 and K; =5

The scaled equation is
2% 25( ) 4+ s0( X ) =
25 50

4+ X oo (3.27)
25 50

i.e.

3. Solving for x/25 and integrating this gives

t
o Far+ (). (3.28)
25 050 25 [4]

But, since it is desired to generate a signal in the computer equivalent
to x/50 the machine equation is
x
+{=1. 3.29
(SO)O (3.29)

t
x T x)
50 0 2150

4. The simulation of Eq. (3.29) requires one integrator whose
output is x/50 and input x/50. If its gain is G, and initial condition I,,
then for this integrator, output

- — j tcl(%) dt + (3’%) : (3.30)

Comparing Eqs. (3.29) and (3.30) leads to the values

G,=- and I, ={2} =1M.U.
50/,

&l =

G, may be obtained by using an integrator gain of unity preceded by
a potentiometer set to 0-5.

The output from this integrator may be fed directly into the input
to the potentiometer, since it is the required function, x/50. Figure
3.5 shows a computer circuit for Eq. (3.29).

B.A.C.T.—3
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1 50
05

-1MU,
Fig. 3.5

5. Record the output from the integrator and check the accuracy
of solution using the values in Table 3.1.

TABLE 3.1

t 0 1 2 10

x 50 30-3 184 0-34

6. Using the same initial condition x, = 50 write out the machine

equation for
2% + x = —20 (3.31)

and modify the circuit of Fig. 3.5 to compute the new solution.
The analytical solution in this case is

x = 70e”"% — 20, (3.32)
from which the graph of x against ¢ may be checked.

3.7 Experiment 8. Solution of a Second Order Differential Equation

If
£+ 2% 4+ 110x =0 (3.33)

and x = 25, x = 0 when ¢ = 0, obtain the graphs of x against ¢ and
X against ¢, given that —25 < x < 25.
1. The patural undamped frequency of the system represented
by Eq. (3.33) is
w, = /110 = 10-49 rad/s.

The damping ratio is
2

=_~ _ = 00954.
2,/110

{

The actual frequency of oscillation is
@ = /110,/(1 — 1/110) = 10-44 rad/s.
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2. Using the relations (3.16) and {3.17) which are applicable here,
|| = 10-44 x 25 = 261
and %] = 2725
3. The scale factors are:
forx, K;=4
for 2, K, =541
for ¥, K; = 595%.

It will be more convenient to take K, = 1/500 and K5 = 1/5000 as
these figures make for easier interpretation of chart recorded values.
4. The scaled equation is

5000 >} + 1000[ =X ) + 2750( X} = o. (3.34)
5000 500 25

Solving for X and integrating once

sooo(i) - - f t[looo(i) + 2750(1‘.)] dt.  (3.35)
5000 . 500 2%

(The initial value of x is zero.)
5. Since it is required to generate a signal equivalent to x/500
in the computer the machine equation is

X j '[2(i) + s-s(i)] . (3.36)
500 oL {300 25

From this equation it can be seen that there is no need to scale the X
term as no corresponding signal appears in the computer.

6. The computer circuit is constructed as described earlier in the
chapter for Eq. (3.5). Any confusion regarding sign inversion is
avoided by writing Eq. (3.36) with the negative sign outside the
integral. Thus to obtain an output of X/500 from the first integrator
inputs of X/500 and x/25 are necessary. If the respective gain factors
are G and G, and the initial condition is I;, then,

X ! x x
o=~ .[ 0 [61(5_6.0) + 62(2—5)] dt + I,. (3.37)

Comparing Eqs. (3.36) and (3.37) gives the values
G1 = 2, Gz = 5'5, and Il = 0.
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The signal —x/25 is obtained using a further integratér with gain G,
and initial condition 7,. Then

X t X
X o e Far+ 1, 3.38
25 L 3(500) 2 3.38)

x _ f k3 _
%= L(zs) dt — 1 (3.39)

the values for G, and 7, are found to be
Gy=20and I, = —1.

Now since

A sign inverter of gain unity provides the necessary signal + x/25
for the input to the first integrator. The signal x/500 is available to be
used as the other input. Figure 3.6 shows the resulting circuit when
standard gains in association with computing attenuators are used.

0-55

Fig. 3.6

7. Obtain the graphs of x and x against ¢ from the signals at the
output of amplifiers 1 and 3.

8. Check the accuracy of your solution from the following in-
formation:

x: Frequency 10-44 rad/s
Initial value 25 units
Final value 0 units.
TABLE 3.2
Peak 1st 2nd 3rd 4th 5th
x value +25 —18:5 +13-7 —10-1 +75

¢ value 0 03 06 09 12
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x: Frequency 10-44 rad/s
Initial value O units/s

Final value 0 units/s.
TABLE 3.3
Peak Ist 2nd 3rd 4th
x value  —227 +167 —124 +92
t value 0-15 0-45 0-75 1-05

3.8 Experiment 9. Generation of Sine and Cosine Functions
Generate 5 sin 2¢ and 10 cos 2¢.

1. x = asin ot is the solution of the differential equation
i+ o0ix=0 (3.40)

where x = 0and X = aw at ¢t = 0.
When o = 2, a = 5 Eq. (3.40) becomes

F+4x=0 (3.41)

where x =0and x = 10att = 0.

2. From Eq. (3.41) the actual frequency of oscillation, which is
equal to the natural undamped frequency, is 2 rad/s.

3. Since x = 5sin2¢ .

|X|w =5, |%|w =10 and ||, = 20.

4. The scale factors are

forx, K,=1%
forx, K, =1
for ¥, K; =4

5. The scaled equation is

20(§> + 20(1‘) ~0. (3.42)
20 5

6. Solving for X and integrating once

Y _ o * .
20(27)) = fo 20<5> dt + (%)o. (3.43)
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7. As it is required to generate a signal /10 in the computer the
machine equation is

X tofx X
0= —L 2(5) dt + (E>o. (3.44)

8. Programming the computer from this equation, integrator 1
has an input of x/5 and an output of %/10. If the gain factor is G,
and the initial condition 7,, then

. t
2= 6fX)ar+ 1, (3.45)
10 0 5
Comparing Eqgs. (3.44) and (3.45)
G, =2 I,=(2) =1mU.
10/,

The signal —x/5 is obtained using a further integrator with gain G,
and initial condition I,. Then, since

t
e 2ar (3.46)
5 05
. t .
and —i; = — f c;z(l_’;) dt + I, (3.47)
4]

it follows that E, = 2, I, = 0.

A sign inverter of gain unity provides a signal x/5 for the first in-
tegrator and the resulting circuit is as shown in Fig. 3.7.

9. The results obtained may be easily checked by measuring the
amplitude and frequency of the solution x.

10. From the same circuit derive and record a signal 10 cos 2.

The functions a sin ¢ and a cos wt are frequently used in comput-
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ing, particularly as driving functions. It is recommended that students
make themselves absolutely familiar with the above procedure.

3.9 Experiment 10. A Second Order Differential Equation
with Variable Damping Coefficient

The displacement x of a body acted upon by certain forces satisfies

the equation
X+rmx+9%=0 (3.48)

and x = 100 cm, X = 0 when ¢ = 0. r is a variable damping coeffi-
cient, which is a measure of the resistive force suffered by the body.
Obtain the graphs of x against ¢ for the cases, (i) r = 1-0, (ii) r = 60,
(iii) r = 10-0.

1. All three cases may be dealt with using a single circuit provided
a potentiometer is included in the damping loop and made propor-
tional to r. The amplitude scale factors for the variables can be
calculated using the lowest value of r, since this will, in general, lead
to the most oscillatory condition and hence the largest amplitudes
of x, x and X.

Since r is positive the system is a decaying one and it will be a good
enough approximation to take 100 as the maximum value of x,
ie. x, = 100.

The natural undamped frequency of the equation is w, = 3.

The damping ratio { = r/6 = 1/6 in the case of least damping.
In this case the actual frequency of oscillation is

o = 3,/(1 — 5%) = 296 rad/s.
= 3 approximately.
2. Using the relations (3.16) and (3.17)
[%|m = 3 x 100 = 300 cm/s
|%|m = 9 x 100 = 900 cm/s?
3. The scale factors are

forx, K; = 11

for x, K, = 333
fOl').C., K3=’9“(133

[
~ O
(=

4. The scaled equation is

900(i) = —300r(_"‘) - 900(i>. (3.49)
9 300 100



28 BASIC ANALOGUE COMPUTER TECHNIQUES

5. Integrating this gives

x _ "% X X
& - fo[r(m)ﬂ(m)] dt+(300)0. (3.50)

6. The computer circuit is constructed as described for Experi-
ment 8. Integrator 1 has inputs of %/300 and x/100 and an output
%/300. If the gain factors on the respective inputs are G, G, and the
initial condition is I, then

x t x x
200~ J;) [G‘(%ﬁ) + GZ(WO)] dt + I,. (3.51)

Comparing coefficients in Eqgs. (3.50) and (3.51)
G1=r, G2=3, Il=0'

To accommodate the largest value of r, i.e. 10, a potentiometer
whose setting is r/10 is used in conjunction with an integrator gain
of 10 to produce gain G,. G, is similarly obtained by a potentiometer
set at 0-3 followed by an integrator gain of 10.

The signal —x/100 is obtained by feeding %/300 through integrator
2.1f G5 and I, are the gain and initial condition of this integrator

X ' X
— T == Gy )dt+1 3.52
f 0 3(300) ! (3.52)

t > .
S TS I P (3.53)
100 o \300 100/,

hence G; = 3,1, = —1.

but

A sign inverter provides the signal -+x/100 for the input to in-
tegrator 1. The output of integrator 1 being %/300 is immediately
available as the other input. Figure 3.8 shows the resulting scaled
computer circuit.

0-1r

03
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This problem involves the use of three potentiometers and two
integrators but in more complex problems it is more usual to employ
many more of these units. It is therefore essential that a methodical
check procedure be carried out in the computer before attempting
to obtain a result. One such procedure will now be outlined and
applied to this experiment.

First a static check consisting of two parts is applied. Part one,
a pencil and paper check, is made before carrying out any patching.
The procedure is as follows:

(a) Represent the problem variables and their derivatives by scaled
initial condition voltages at the output of each integrator. These
voltages are quite arbitrary but are chosen to produce reasonable
outputs, they need have no physical significance.

(b) On the computer diagram write down these selected scaled
voltages next to the outputs of the appropriate integrators.

(c) Using these voltages perform the various operations of
summing, multiplication by a constant, etc., and hence calculate the
voltages at all the input and output terminations of all the computing
components. As integrators are not operational in the initial condi-
tion position this calculation is not carried beyond the input stage
of any integrator.,

(d) Substitute the assumed initial condition values of the variables
into the original (i.e. the unscaled) equation describing the problem
and calculate the value of the highest derivative. This value should
tally with the voltage level obtained in (c) for that point. If the
actual voltage levels are too low or zero it is necessary to change
some of the assumed values of the variables and repeat the above
calculations.

The problem is now patched on the computer and the second part
of the static check is carried out. This consists of setting the potentio-
meter and the initial conditions to the static check values and then
measuring the outputs of all the computing components with the
switch in the Initial Condition position.

To check that the input resistors to an integrator are of the correct
value the following procedure may be followed.

In the given circuit (Fig. 3.9) the gains through the integrator are
1, 10 and 1. Disconnect junction J from the integrator and connect
to an amplifier with a feedback resistor of 1. The output of this
amplifier should be I1(1) + 10(0-02) + (0-1) = 1-3.

As this produces overloading the gains need to be reduced by a
factor of 10, i.e. a feedback resistor of 0-1.
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Having completed the static checks it is often possible to perform
various dynamic checks; these however depend upon the information
available and it is obviously impossible to generalize.

1

1 — A
1 o—AA—
02 A
, v
01 AN —
Fig. 3.9

This check procedure will now be applied to Experiment 10. For
clarity some form of tabulation is recommended (see Table 3.4).

(1) The potentiometer settings are calculated from the computer
diagram Fig. 3.10 and entered on the sheet.

(2) Assume the following values for the variables

%X =300, x=100 and letr = 1.

(3) On a copy of the computer diagram mark in the static check
voltages. (These appear in the small rectangles on the diagram.)
Notice that integrator 1 is now supplied with an initial condition for
the purpose of the check procedure.

i ) 10
w () I0

10 1

KJ—
10 - F_T]
- Fana P

100
1213\!
Fig. 3.10
(4) Substitution in the original equation of the problem gives
% = —(300r + 900) ft/s2. (3.54)
The input to integrator 1 should thus be

5
—— = +(r +3)M.U. = +4 3.55
200 Tt 3.59)

in the case r = 1.
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From the circuit above the input at the grid of integrator 1 is
10(0-1)(+1) + 10(0-3)(+1) = 4. This checks with the calculated
value and indicates that the original equation is correctly modelled
by the computer circuit.

(5) As previously stated the computer is now patched and with
the above settings the output voltages are checked.

TABLE 3.4
Problem Sheet
Potentiometer 1 2 3 4 5
Setting (r) 0-1 03 03 1 1
Amplifier Output Static check
Calculated Measured

Check point Output Check point Output
MU) OM™MU) O™MU) ™MU)

* 1
1 300 r+3 +
X
2 - -1
100 3
X
3 *x 1
100 +

3.10 Experiment 11. Solution of Simultaneous Differential Equations
when Knowledge of the Problem Variables is Available

Solve using the analogue computer the equations

X —2y=20 (3.56)
y+2x=0 (.57
given that x = 50 and y = 40 when ¢t = 0.
Assume that —70 < x < 70 and —80 < y < 60, the analytical
solution of Eqs. (3.56) and (3.57) being
y = 50/2sin (2t — =/4) — 10
= —50,/2 cos (2t — n/4).
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(1) Using the analytical solution the maximum values of x and y
can be calculated as

|X|m = 100\/2, |§|. = 100,/2.

(2) The scale factors are

for x, K, = 1/70. Use 1/100
for x, K, = 1/100,/2. Use 1/150
fory, K; = 1/80. Use 1/100

for y, K, = 1/100,/2.  Use 1/150.

(3) The scaled equations are

150 .} — 200 2.} =20 (3.58)
150 100
and
y X
150{ -2 ) + 200[ X} = 0. 3.59
(150) (100) (3.59)
Thus
K _Myy 2 (3.60)
150 3\100) ' 15
and
AN (EAY (3.61)
150  3\100

(4) Integrating each equation once and rearranging gives the

machine equations
X
- 3.62
(100)0 (3.62

t
LAY it PTG D O
100 0 100) 5
t
Do o VA + {2 (3.63)
100 o 100 100/,

Note again that a minus sign is placed outside each integral. As
previously stated this is to be compared with the inherent sign
reversal occurring in the electronic integrators. The signs attached
to each term of the integrands of Eqs. (3.62) and (3.63) become the
signs required for the corresponding input connection of the com-
puter circuit.

(5) Equations (3.62) and (3.63) can be solved using two integrators.
The first supplied with inputs —y/100 and —1/5 M.U. develops an
output of x/100 while the second, supplied with an input of x/100,
produces an output of y/100.



ORDINARY DIFFERENTIAL EQUATIONS 33

If the gain factors on the inputs of the first integrator are G, and
G, and its initial condition is I,, then its output is

x __["_lef> 1 4
ST e om

Similarly if G, and I, are the gain factor on the second integrator
and its initial condition respectively then

y "ol X
Yo~ )G -E)dt+ 1, 3.65
100 L 3(100) ? (369

Comparing Egs. (3.62) and (3.63) with (3.64) and (3.65) gives
G1=2, G2=1, G3=2
L=({2X) =0os5MuU, I,=(2) =04MmuU.
100/, 100/,

A sign inverter of gain unity converts the output of integrator 2 to
the appropriate sign for the input of integrator 1. The complete
circuit is as shown in Fig. 3.11.

-1M.U. : 1

10

y y
m/ll oo 10
2 ' 2 l °

O, “iMu,

Fig. 3.11
Potentiometer 1 2 3 4 5
Setting 0-2 0-2 05 02 04

(6) Perform the static check procedure described earlier to confirm
the voltage levels occurring in the initial set condition.

(7) Record the values of x/100 and y/100, and test the accuracy of
solution using the analytical form given above. The frequency of x
and y is 2 rad/s, thus if a number of complete periods are measured
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from the graphs of x and y against ¢ the period and hence the angular
frequency of oscillation may be checked. Do not simply use large
values of ¢ to test the solution, since small percentage errors in the
timing can cause large errors in the value of x and y, caused by the
resulting phase shift of the curve.

3.11 Experiment 12. Solution of Simultaneous Differential Equations
when Prior Knowledge of the Variables is not Available

Obtain the graphical solution of the simultaneous differential
equations

d—)f+2x+y=0 (3.66)
dt
dy
;ﬁ+x+2y=0 (3.67)

giventhat x = 1,y = O when ¢ = 0.

(1) In this problem nothing is known of the maximum values
attained by the variables. However estimates may be made in the
following way.

Consider the first equation with y regarded as constant at its initial
value, i.e. y = 0. The equation reduces to

4 Lok =0 (3.68)
dt

and has the solution x = e~ %' using the value x =1 at = 0.
Consequently the greatest value of x is 1.

If this maximum value of x is used in Eq. (3.66) in place of the
variable x, then

dy
Z+2y=~-1 3.69
TR (3.69)
which has solution y = 4(e”** — 1).
Hence ly[,,, = i
(2) The scale factors are
fOl‘ X, K1 = 1
forx, K, =14%
fory, K;=2
fory, K,=1

using the principle outlined in Experiment 7.
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(3) The scaled equations are:

2(’_2‘) + 2(x) + %(Zy) =0 (3.70)

and
y+x+2y=0. (3.71)

(4) The machine equations are

x = - J 0 [Zx + %(Zy)] dt + 1 (3.72)

and
2y = _J' [2x + 2(2y)] dt. (3.73)

0

Referring to previous experiments it can be seen that the gain factors
associated with each amplifier input are the actual coefficients of the
scaled variables appearing in the machine equation. Thus in Eq.
(3.72) the x input to the integrator has an associated gain of 2, this
being achieved using a gain of 10 together with a series potentio-
meter set to 0-2 (potentiometer 1 of Fig. 3.12). In this and future

ofc

1

2y
2
10

Fig. 3.12

29

experiments this method will be adopted in programming the
computer.

(5) Equations (3.72) and (3.73) are solved in the computer using
a circuit containing two integrators as in Fig. 3.12. To obtain the
desired gains the potentiometer settings are as follows

Potentiometer 1 2 3 4
Setting 0-2 05 02 02
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(6) Perform the static check using some non-zero value of (2y),.
(7) Record the solutions of x against ¢ and 2y against ¢.
(8) Check the accuracy of solution by direct calculation from the
solution
x=3e " +e
y=3He¥—e).

3.12 Experiment 13. Forced Mechanical Oscillations

A body of mass 8 1b is hung by a spring producing in the spring an
extension of 3-2 ft. The upper end of the spring is made to execute
a vertical oscillation z = 12sin4#, z being measured vertically
downwards in feet. The mass is subjected to a frictional resistance
whose magnitude in pounds weight is one-half of its velocity in ft/s.
Obtain a graph of the displacement x from the equilibrium position.
Take g to be 32 ft/s?.

It is first necessary to obtain the equation describing the physical
system.

Fig. 3.13

For a body of mass m lb oscillating as stated the forces upon it are

(i) The gravitational force myg.

(if) The spring force which opposes the displacement and is
proportional to the extension of the spring.

(iii) The damping force which opposes the velocity and is pro-
portional to the velocity.

(iv) The excitation z.

Newton’s second law of motion states that the rate of change of
momentum is proportional to the impressed force and takes place
in the direction of the straight line in which the force acts. For a
constant mass the rate of change of momentum is equal to the pro-
duct of the mass and acceleration. In the given system the equation
of motion is
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mj = algebraic sum of the forces in the y direction,
i.e.
mj = —Kgly ~z — 1) — rgy + mg. (3.74)
In equilibrium (Fig. 3.13(a))
0 = —Kge + mg

. m
1.€. = —.
e

Substituting for K and rearranging, Eq. (3.74) becomes

MMy —1—e-z)+ry=0. B.75)
g e -

From Fig. 3.13(d) it can be seen that the displacement x from the
initial equilibrium positionis y — 1 — ¢, i.¢.
y=x+1+e
Substituting for y and its derivatives Eq. (3.75) becomes
Pt rs+ M = (3.76)
g e e
Substituting the problem values the describing equation is therefore
X + 2% + 10x = 120 sin 4¢. 3.77)

1. The maximum values of the problem variables have now to be
found. In practice a working knowledge of the type of problem will
in most cases enable a good estimate to be made. For this particular
problem a value for the maximum values of x and x may be found
using the equal coefficient rule and treating the right-hand side of
Eq. (3.77) as a constant equal to 120.

This rule gives |x|, = 31%29 =24 (see (3.20)

and (] = 11_0 = 120,

The normalized equation is

1200 * )+ 2.5 2 ) + 2.1200 X ) = 120sin 4. (3.78)
120 Xm X

B.A.C.T.—4
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For equal coefficients of the normalized variables
2%, = 120, ie. %, = 60.
2. The computer circuit for solving Eq. (3.78) will consist of the
usual circuit for a second order equation together with the circuit

for producing the sin 4¢ term.
3. The scale factors are

for x, K; =34 Use 5.
forx, K, =4%. Use 5.
for 55, K3 = —1% Use 1*;5.

4. The scaled equation is

XX (X inar, (3.79)
20~ "0~ 1333

5. Integrating this gives

. o .
o= f+25 XY —sindt|de+ (-2 ). (3.80)
120 ol 60  12\25 120/,

The machine equations are

*__ f ’[2(_"2) + 2_5<i) — 25sin 4t:| dt + <l> . (3.81)
60 o \60) T 6\25 60/,

and also
..
X2 O _E g (X)), (3.82)
25 25), 60 25/,

The body starts from rest in the equilibrium position so that

Y (X)) <o
60/, 25/,
6. The computer circuit is

10
10
10
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To obtain the desired gains the potentiometer settings are as follows:
Potentiometer 1 2 3 4 5 6
Setting 0-2 02 042 024 04 0-4

7. Perform the static check; confirm that the sine wave has the
correct period.
8. Record the values of x/25. The analytical solution is

x = 16e *sin (3¢ + o) — 12 cos (4f — )
where tan o = 3/4.

3.13 Experiment 14. Coupled Circuits

A steady e.m.f. of 12 volts is applied at time ¢ = O to the circuit
shown. The currents in the two branches after ¢ seconds are denoted
by x and y and R is 2 ohms. Obtain the graphs of x against ¢, y
against ¢ for the ratio of R/L equal to 5, 1, 0-5.

Fig. 3.15

1. Applying Kirchhoff’s Laws to this circuit the current flowing
in the arm BC is x — y and the following equations are obtained

Li+2x+2(x—y) =12 }
Ly +2y—2(x—y)=0.

2. The maximum values of the currents x and y may be estimated
from a consideration of the physical principles involved in this
circuit. The currents reach a maximum value, i.e. X = 0 = y, and
hence

(3.83)

4x — 2y =12 }

4y —2x—0 (3.84)

giving x =4,y = 2.
3. The scale factors are
for x, 1/4
fory, 1/2
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for x, = see (3.13
% e (see (3.13))
L
for y, —.
or y 3
4. The scaled equations are
R E N P B (3.85)
16 4 8\2) 16 ‘
ng' = —B - 3‘] (3.86)

5. Integrating gives

)AL ) o+, oo
Q- JL-Jeo ). o
TR 1)), o
LD, e

Initially the currents x and y are zero. Thus

(-G

6. The computer circuit is

or

Al

no=Ip=s2 )y
—1M.U. 10 l/

O
¥y

Fig. 3.16

L3R

NI
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7. To obtain desired gains the potentiometer settings are as follows:

Potentiometer 1 2 3 4 5
Setting 4/10L  3/10L 1/10L  4/10L 4/10L

8. Perform the static check and then record the values of x/4
and y/2.
9. The analytical solution is

x = 4 — 3e—2t/L _ e—bt/L
y= 2 — 3e—2t/L + e—6t/L

3.14 Experiment 15. The Force Developed by a Hawser

A hawser is wrapped around a capstan and a constant force of 200
Ib wt. is exerted at its free end. The force developed at the other end
depends upon the amount of contact it makes with the capstan and
upon the coefficient of friction. Examine the relationship between this
force for various angles of contact up to 4z radians (i.e. two full
turns) and for coefficients of friction 0-25, 0-2, 0-1, 0-02 and 0-01.

Fig. 3.17

The defining equation of this type of system is found as follows.
Consider the forces acting in a small element PQ of length ds. The
tangential forces due to the tension in the rope are T and T + 6T
and a frictional force F ds. The normal force acting on PQ is R 6s.
In the position of limiting equilibrium resolving in the direction of
the tangent and normal at P respectively the following equations are
obtained

(T + 6T)cosd0 — T — Fés =0 (391)
(T + 6T)sind9 — Rds =0 ’
which, as 40 and 6T are small, reduce to
0T — Fés =90
T30 — Roés=0 } (3.92)

giving F = dT{ds, R = T df/ds in the limit as 6 — 0.
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But F = uR
ds ds
or
daT
= 3.93
T (3.93)

1. This equation has a solution of the form
T = Toe® where T, = 200 (see Experiment 7)

and from this solution the maximum values of T, T,,, may be found.
When 0 = 4n these are approximately

(a) when p = 025, T, = 46 x 102
(b) when pu = 020, T, =25 x 102
(c) when g = 010, T, =7 x 102
(d) when u = 002, T, = 2:6 x 102
(e) when p = 001, T, =23 x 102,

2. Examination of these values shows that whilst all solutions
may be recorded using the same scale factor greater accuracy would
be obtained using a different scale factor in cases (¢) and (b) from that
in (¢), (d) and (e).

In the former two cases a suitable scale factor would be 10~2/50
and in the other three 1072/10.

[}

3.AsT = j uT df an analogous equation may be set up on the
]

computer by allowing one second of time in the computer solution

to correspond to 1 radian of angle in the problem. The equation is
thus

t
T = J uT dt. (3.94)

0

For (a) and (b) the scaled equation is

-2 t -2 — 2
10727 _ _[*_ (10727 5y L (1077 (3.95)
50 0 50 50 /o

For (¢), (d) and (e) the scaled equation is

t
1073T = —f —(1073T) dt + (1073T),. (3.96)

0
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4. The computer circuit for both scalings is

Fig. 3.18

For (a) and (b) the output of integrator 1 is 10~27750, for (c), (d)
and () the output is 10737,

5. To obtain the desired gains the potentiometer settings are as
follows.

Case Pot. 1 Pot. 2

(2) 025 0-04
(b) 02 0-04
(©) 01 0-2
(d) 0-02 02
(e) 0-01 02

6. Perform the static check and then record the values of T
against 0.

7. Check the solutions using T = 200e*® where u assumes each of
the values given in the problem.

3.15 Further Exercises
1. Set up a circuit to solve the equation

d_x + ax = 0,
di
with initial condition x = 1 at ¢t = 0, and where « is in the range
0a<10.
[Solution: x = e™*.]

2. Set up a circuit to solve the equation

d*y -
Z 2 + 9y = 107
dt? Y
with initial conditions y = 0, dy/dt = 50 when ¢ = 0. Examine the

solution for values of « equal to 0, 1 and 10.
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. 0 1 .
[Solutlon: y = {5— + _(h_z_} sin 3¢

3 32 +9)
10 10 _
——— cos3t 4+~ g™
(@* +9) (@* +9) ]

3. Given the simultaneous differential equations

3% 4+2x+y =1
X 44y + 3y =0,

with the initial conditions x = 0 = y at ¢ = 0, use the methods of
simplification of Experiment 12 to show that the greatest expected
numerical values of x and y are 4 and ..

Hence program the equations for solution on the computer, set
up the corresponding circuit and use the static check procedure
before obtaining the graphs of x and y against 7.

— 1,—t 3 —61/11
,:Solution: = % T3¢ Tt / ]
y = ze

. 1,-6t/11
5€

4. Obtain the graphical solution of the equation
X + 25x = cos 5¢

with initial conditions x = 0-1, X = 0 when ¢ = 0, over an interval
0 <7< 10 s. This solution illustrates the case of resonance, the
amplitude of x increasing with z. The methods of estimating the
problem variables described previously are not applicable; indeed no
simple method exists for this type of problem. Assume |x|m = 1and
X|, = 5.

| I [Solution: x = 0-1(¢ sin 5¢ + cos 5¢).]

5. The phenomenon of Beating occurs when two sinusoidal
signals of similar frequency are added together, resulting in a signal
of approximately the same frequency but modulated at half the
difference frequency. Demonstrate this by generating

x=03cos10t and y = 0-3 cos9r
and then producing their sum

z = 0-3(cos 10¢ + cos 9¢)
= 06 cos 9-5¢ cos 0-5¢.

Treat x and y as solutions of differential equations as shown in
Experiment 9.



CHAPTER 4

Time Scaling

4.1 Introduction

The solutions to the wide range of problems covered by analogue
computers may extend over periods of time ranging from a few micro-
seconds to many hours. In all cases except those involving a solution
time of only a few seconds, time scaling of the problem is essential.

The speed of response of the computer and its associated equip-
ment dictates the minimum solution time taken by the machine. The
maximum time is essentially determined by convenience in the use
of the computer and associated recording equipment.

The need for time scaling is indicated in the scaled equations which
are obtained as explained in the previous chapter. From these equa-
tions it can be seen that the coefficients of the scaled variables are
the net gain factors of the inputs to the appropriate integrators. In
those computers fitted with fixed input resistors and feedback capaci-
tors there is an obvious maximum gain (usually 10) which cannot be
exceeded, but even where a wide choice of resistors and capacitors
is available it is acceptable computer practice to work with gains in
the range 1-50. Hence, if in the scaled equations gains outside the
acceptable range are indicated time scaling must be applied.

Consider the following example

X = 50,000 — 50x — 40,000x 4.1

where x = 0 = X% initially.
It can be shown that 0 < x < 10 and —500 < % < 500.
The scale factors are (i) s34 for %

(i) & for x.

The scaled equations are
. ‘ .
o= sl 2 ) + soe( ) - 100 | dt (4.2)
500 ol " \5 10

X tso(l) dr. 4.3)
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Gains of 50, 800, 100 and 50 are required and thus time scaling is
necessary.
It can also be seen from this problem that

63
= 200\/(@) (see Eq. (3.7)).

Such a high frequency is likely to produce serious errors in record-
ing equipment and also in other computing components.

4.2 Methods of Time Scaling

Time scaling may be performed in two ways. The first of these in-
volves rewriting the problem equation using the following procedure.
If T = computer time and ¢ = problem time, let

T = at. 4.4

[Note: If o« > 1 the solution is slowed down by a factor a.
If « < 1 the solution is speeded up by a factor o.]
The derivatives become
d d

4 _ - @.5)
dt  d(Tjw) dT
2 2
E_d (AN a8 “6)
dt*  d(T/\ dT ar?
and, in general,
dﬂ dn
—_— = an —_— 4.7
dt* ar" @7

On slowing down the problem stated in (4.1) by a factor of 100
the equation now becomes

2
104 4% 510t — 5x105 %X — 4x10%, (4.8)
dr? T
i.e. v
¥=15—05% — 4x, 4.9

the dots now denoting differentiation with respect to 7. The ranges
of the problem variables are now

O0<x<10, =5<x<5§
and the new scale factors are
(i) + forx
(ii)) ¢5 for x.
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The scaled equations are

)l
L e

The gains now required are thus 0-5, 8, 1 and 0-5. From Eq. (4.9),
o = 2,/(63/64) which checks that the problem has been slowed
by the desired amount.

The second method of time scaling is carried out by changing the
rate of integration. This method is preferable to the former as the
two scaling operations are kept separate and it also reduces time
scaling to a simple mechanical operation.

Consider the integration

10 10
J‘ €; dt = ei[t} = 10€i, (4.12)
0 0

where e; is a constant.
If the independent variable ¢ is changed to T by the relation
T = 5t, then on substitution in Eq. (4.12)

1[50 el 50
gj‘ e dT=-51I:T] = 10e,. (4.13)

0 0

W] R

These integrations may be represented graphically (Fig. 4.1).

10e; |- -~

f
I
|
1
|
I

10«

Fig. 4.1

Comparing Egs. (4.12) and (4.13) the integrals are seen to be of
identical form except that the latter is multiplied by a constant of 1.
In a computer an integrator performs the operation

1 (=
eg = ——— e;dt + E,. 4.14
o= CL ; (4.14)
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Substituting the new independent variable T this gives

1 (™1
eg=——| e~ dT + E 4.15
0 R, 0 (4.15)
1 aty
= —— ¢;dT + E,. (4.16)
aRC ],

Thus all that is necessary to change the time scale by a factor of «
is to change the integrator time constant from RC to aRC.

As has been shown, solving a differential equation on an analogue
computer involves successive integrations. The time scaling in any
such equation may thus be changed by altering the integrator time
constants as stated. Note also that terms in dx/dt and d*x/dt? must
be replaced by o dx/dT and «? d?x/dT2.

In interpreting the results the new time scale factor should of
course be borne in mind. The most convenient way of doing this is
to relabel the time axis in terms of T/a.

4.3 Summary of Method of Solution of a Differential Equation

At this stage it is convenient to summarize the various steps involved
in solving a differential equation.

(1) Estimate the maximum magnitudes of the problem variables
and their derivatives.

(2) Determine the appropriate scale factors and write down the
scaled equations.

(3) Draw the computer circuit.

(4) If time scaling is found to be necessary change the time
constant (RC) of all integrators to the desired value «aRC.

(5) Apply the check procedures.

(6) Record the solution and relabel the time axis according to the
t = T/« relationship.

4.4 Experiment 16. Slowing Down a Second Order
Differential Equation
A vibratory system is described by the equation
% 42000% + 107x =0 “.17)

with initial conditions x = 2 and % = 0. Slow down by a factor of
103 and solve.

1. The system is damped oscillatory and thus the maximum value
of x may be taken to be approximately 2. Using relations (3.16 and
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3.17) the maximum values of |%| and |%| are about 6 x 103 and
18 x 10°. Hence suitable scale factors are

(a) 12 for x
®) 1/10* for %
(¢) 1/2 x 107 for %.

2, As
t
= - .f [2000x + 107x] dt (4.18)

0
the scaled equations are

I X X X

ke f ] [2000(1—04) +2x 10 (2)] dt + (1 04)0 (4.19)

- f ‘ _9‘,‘(-1) di + (i‘) . (4.20)
o 2110* 2/,

3. It can be seen from these equations that gains of 2000 and
5000 would be required. As has been stated, this indicates the need
for time scaling. Slowing down by a factor of 103 the modified
equations will now be

%+ 2% +10x =0 4.21)

*__ f T[z(ﬁ) + z(f)] dT + (i) 4.22)

10 0 10 2 10/,

- - f ’ _s(i) AT + (.’f) . (4.23)
. \10 2),

4. The computer diagram is

an

NI =

and

NI R
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The potentiometer settings are

Potentiometer 1 2 3
Setting 02 0-2 0-5

5. Perform the static check. From Eq. (4.21) verify that the fre-
quency is 103 times the frequency in Eq. (4.17). Record the solu-
tion.

4.5 Experiment 17. Speeding up a First Order Differential
Equation Given in Problem Form

Radium decays at a rate proportional to the quantity of radium
present. In 25 years 0-022 g from a sample of 2 g is found to have
decomposed. Produce a curve showing the rate of decay to the point
when one-quarter of the original quantity is left.

1. If n = number of grammes of radium at any time ¢ years, then

an _ _kn. (4.24)

dt

This gives a solution of the form n = nye™** (see Experiment 7).
It is given that ny =2 and when ¢ = 25, n = 1-978. Hence
1978 = 2¢7K-25 je. log 0989 = —25K giving K = 0-00044.

2. The maximum value of n is 2 and an exactly similar computer
equation is obtained if 1 s of time in the computer is made to cor-
respond to 1 year in the problem. The describing equation is thus

an _ ~0-00044n. (4.25)
dt
The scale factor for n is 4.
3. As

t

n= —J‘ 0-00044n dt + (n) (4.26)
[4]

the scaled equation is

t
™ — | 0000442 ar + (2] . 4.27)
2 o 2 2/,

Speeding up by a factor of 10° (i.e. 1 s on computer = 10 years)
a modified equation is obtained:

n_ _ f To-44(2) dT + (2) . (4.28)
2 0 2 2 0
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4. The computer circuit for this is

1 | 2
—1M.U.
Fig. 4.3
The potentiometer settings are
Potentiometer 1 2
Setting 0-44 1

For a better recording a different time scale factor may be necessary.
Repeat the experiment speeding up Eq. (4.25) by factors of 100,
10,000.

4.6 Experiment 18. Xenon Poisoning in a Nuclear Reactor

A reactor which has been operating at a high thermal-neutron flux
level is suddenly shut down. Iodine 135 and xenon 135 are then
present in amounts 3-17 x 10*® and 1-90 x 105 atoms per unit
volume. The half-life periods of the two nuclides are 24,120 and
33,120 hr respectively and it is known that iodine 135 decays to
xenon 135 which in turn decays to comparatively stable caesium 135.
Obtain graphs showing the concentrations of iodine 135 and xenon
135 as functions of time after shut down.

I. It can be shown that the equation for the concentration of
xenon is

d;X = —llX + }.21
dt
and that for the concentration of iodine
dl
= 2,1
dt z

where /; and 4, are the decay constants per second for xenon and
iodine respectively, and X, I are the concentrations of xenon and
iodine respectively in atoms per unit volume. The solution of the
first order equation dy/dt = —Ky is y = y,e ¥, and applying this
to the problem, the describing equations are found to be

dl _  0-6931

— — = —-2874 x 10751 (429)
dt 24,120
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and
X _ 06931, 06931, 5092 x 107X + 2:874 x 10-51
T 33120 | 24.120

(4.30)

2. The maximum value of I is obviously 3:17 x 1015, An estimate
of the maximum value of X may be obtained in a similar manner to
that used in Experiment 12. It is easier however to try say a maxi-
mum of 4 x 10!3; if this is too small overloading will occur but it
will not be too difficult to re-scale.

3. Using the above values the scale factors are

(i) forZ, 1 x 10713
(i) for X, } x 10715,
4. The machine equations are

—-15 t —~-15 —-15
10"y | 2874 x 107522 1) ar + (19 (4.31)
I
4 o 4 4 ),

and

—-15 t —-15
0 "y _ j [2-092 x 10-5(10 X)
2 . 4
-15 -15
—2874 x 1075 (30 "V ar + (22 x) . @32
4 4 X))

Speeding up by a factor of 3600, i.e. 1 s of computer time equivalent
to 1 hr of the problem time, these equations reduce to

—-15 T —-15
104 [=— f o-103<104 1) dT + 0-793 (4.33)
0

-15 T —-15 -15
10" "y = — | {0075(1° "x) — 0-103( " "1\ | a7 + 0475
4 . 4 4
(4.34)

5. The computer diagram is
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6. The potentiometer settings are

Potentiometer 1 2 3 4 5
Setting 0-103 0793 0075 0103 0475

7. Carry out the check procedure and obtain the graphs of I
against ¢ and X against ¢.

4.7 Experiment 19. Simultaneous Differential Equations
Requiring Time Scaling
Obtain the graphical solutions of the equations
% + 100% + 10%x + 10*y = 4 x 10*
y+ 100)’;A+ 9 x 10*y + 200% — 19 x 10*x = 22 x 10*

given that x = y = 0; x = 200; y = 400 at ¢ = 0.

1. As in Experiment 12 nothing is known of the maximum values
of the problem variables, but estimates may be obtained using a
procedure similar to that outlined in that experiment.

Consider the second equation with the x and X terms zero. The
modified equation is

5+ 1009 + 9 x 10*y = 22 x 10%. (4.36)

Using the equal coefficient rule the following estimates of maximum
numerical values are obtained:

|9l = 22 x 10%, [p|m = 22 x 10%, |y|, = %~

(Note: These values are calculated on the basis of zero initial condi-
tions and will be only approximate.)

In the problem use |y|,, = 25 x 10* and |y|, = 10.

Substituting this maximum value of y in the first equation of
(4.35) gives

(4.35)

%+ 100 % + 10*x = —6 x 10%, 4.37)

From this the estimated maximum values are found to be
|%m = 6 x 10%, |%|,, = 600, |x],, = 12 by further use of the equal
coeflicient rule.

Use in the problem |%|,, = 10* and |x|,, = 10.

2. The machine equations may now be written

X 1o E Y+ 100 X + 100f 2 ) — 40| 4
1000 . 1000 10 10

+H ) @3
1000/,

B.A.C.T.—5
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' x X
=—| —100{ —— |dt + [ = (4.39
0 1000 10/,
. t s .
I [ 1002} +2000( » ), 2000 X
2500 - J, 2500 25 \10/  2-5\ 1000
2 .
ERCRNETTE A DRl AN G 2 (4.40)
250 10 25 2500/,

t .
Y=o =250 L e+ (2], (4.41)
10 o 2500 10/,
3. Slowing down by a factor of 100 the modified equations are

. T <
1=_j [1+i+l_o-4]dfr+o-2 (4.42)

Slx

10 10 10 10

T .
X = “Zuar (4.43)

10 o 10

; ,
Y= {2 +36[2)+08 2 )=762)-088|dT +016
25 o 10 10 1

(4.44)

T o
Yo | =252 )dr. (4.45)

10 o 25

The dots now denote differentiation with respect to T, where
T = 100z
4. The computer diagram is
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5. The potentiometer settings are

Potentiometer 1 2 3 4
Setting 04 0-8 076 0-88
Potentiometer 5 6 7 8
Setting 0-36 0-25 02 016

6. Carry out the check procedure and then obtain the graphs of
x against 7 and y against ?.
7. The theoretical solution is

x = sin 200¢ — % cos 200¢ + %
y = 2'sin 200t — 3-5 cos 200z + 3-5.

4.8 Experiment 20. A Suspension Problem

A two-wheeled trailer chassis weighs 960 1bf and its axle 128 1bf.
The spring constant between the chassis and axle is 800 Ibf/ft and
that between the axle and ground (due to the tyres) is 1500 1bf/ft.
Examine the effect of various shock-absorber damping coefficients
upon the motion of the chassis when the trailer mounts curbs of 2,
4 and 6 in.

A simplified diagram illustrating the sus-

M, pension system of one wheel is shown in
= Fig. 4.
x M, = 2§%1b = 480 Ibf
1
et ‘ M, =15%1b = 64 Ibf
% K, = 800 Ibf/ft
K, = 1500 1bf/ft
Ms e ¢ = shock absorber - damping coefficient
& x variable from 10 to 100 Ibf s/ft
/ x; = 0-166;0-333; 0-500 ft.
Fig. 4.6

1. Comparing this problem with that in Experiment 13 and using
Newton’s second law the equations of motion for the two masses are
found to be

%xl b o) — %) + Ky(%; — %) = 0 (4.46)

—AJ—ZJEZ + C(.)'Cz e 561) + Kl(xZ - xl) + Kz(Xz - X3) = 0, (4.47)
g
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ie.
15%, + e(%; — %;) + 800(x; — x,) =0 (4.48)
2%, + (X, — %,) + 800(x; — x;) + 1500(x, — x;3) = 0. (4.49)
Initially x; = 0 = x, and X; =0 = X,.

2. Practical considerations enable a good estimate of the maxi-
mum values of x; and x, to be made in this problem. It will be
assumed that the maximum displacements will not exceed twice the
value of the input function x;.

3. Consider Eq. (4.48) without the presence of the terms contain-
ing %, and x,

15%, + ¢x,; + 800x, = 0. (4.50)

1n the case where damping is least ¢ = 10, hence ‘
15%; + 10%; + 800x, = 0 @.51)
and o, = /522 = 10,/%%.

Then as |X; |, = 1, [%{|m = 10\/5%. The value |%,|, = 5 ft/s will be
used.
Substituting these maximum values in Eq. (4.49)

2%, + 10%, — 50 + 800x, — 800 -+ 1500x, — 1500x; = 0, (4.52)

i.e.
2%, + 10%, + 2300x, = 850 + 1500x, (4.53)

w, = 1022 and [x3|, =1, .. |%3]m = 10/%2. The value
|[%2]m = 50 will be used.
4. The scale factors are

for x, and x,, 1
for x;, %
for x,, %

5. The scaled equations are
X4 e fx, 2(x, 800 800
oo P2} = &[22 )+ =y — Sox, At (454
5 L[u( 5) cs(so) 7571775 x’] “39
o t . .
Y2 Y22 = E( 2 + 23x, — 8x, — 15x; | dt (4.55)
50 o| 2\ 50 200 5
! %
Xy = — j —5(_1) dt (4.56)
0 5
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Xy = — j t —50("‘_2) dt. (4.57)
T \50

All initial conditions are zero since the system starts from rest in the
equilibrium position.
These equations may be slowed by a factor of 10 to give

. T . .
o [Tl (F) - ofF2) £ 80 80 Tur 4ss)
-5 o | 150\0-5 15\ 5 75 75
%, Me(x ¢ (%
22 = — 12— — L) + 2:3x, — 08x, — 1'5x5 | 4T
5 o l20\'5 200\ 0-5
(4.59)

(T %,
Xy = f 0 5(()__5) T (4.60)
Xp = — J ' —5("‘_2) dT. (4.61)
o \3
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7. The potentiometer settings are

Potentiometer
1 2 3 4 5 6 7 8 9 10 11
Setting
c 8 ¢ 8 1 ¢ ¢ 4. 3023 05
150 75 150 75 2 200 200 10

The initial condition settings are all zero.

8. Carry out the check procedure and for the different values of
x5 examine the effect on the chassis vibration of an increasing damp-
ing coeflicient c.

4.9 Further Exercises
1. Set up a circuit to solve the equation

% + 100 x + 10%x = 10°
giventhat x =0 =% at ¢ = 0.
[Approximate solution is x = 1 — e 3% sin (103 + 1-52).]

2. The velocity of a chemical reaction is proportional to the con-
centration of the reacting substance. Show that if a be the initial
concentration of the reagent and x the amount transformed after
time ¢ then

= = K(a — x).
7 ( )
Set up a suitable circuit to obtain a graph showing the variation of
x with t over the first second of the reaction when K = 5-2 and
a = 90-3.
[Solution: x = 90:3 (1 — e™>?%7).]

3. Examine the solutions of the equation
X + 0-06 % + 0-011 x = 0011 sin wt

for w = (i) 0-08, (ii) 0-09, (iii) 0-1, given that x = 0 = X at £ = 0.
[Solution:

x = e~ %°%[4 cos 0-1005¢ + B sin 0-1005¢] + K sin wt + L cos wt
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where, for

(i A=1195 B= —-05547, K=1145 L= —1195
(i) 4=1581, B= —02885 K=0849, L= —1-581
(iii) 4 = 1-783, B = +0-2364, K = 0297, L = —1-783.]

4. Obtain the graphical solution of the simultaneous equations

%+ 107%% + 1074(x — y) = 0-5 x 1074
F+ 10725 + 107%(x + y) = 1-5 x 10~*

giventhat x = -1,y =1-5,x =102,y =2 x 10" %2at¢ = 0.

Solution: x = sin 10™2¢ — 2cos 107 %¢ + 1
¥y = 2sin107%¢ 4 cos 107 %¢ + 0-5.



CHAPTER 5
The Use of Non-Linear Units

5.1 Introduction

In the preceding chapters the problems were restricted to those
involving linear operations only. Terms such as y dy/dx or \/y did
not occur in the equations to be solved. This limitation may be lifted
if certain other non-linear elements are included in the computing
equipment. The analogue computer handles non-linear differential
equations just as easily as linear ones.

A brief outline of the most important non-linear unit—the multi-
plier—will be given in this chapter together with some of its major
applications. Experiments utilizing these techniques will then be
given. For a thorough review of multiplying units the student should
consult the computer reference books and the operator’s manual for
the particular computer at his disposal.

5.2 The Multiplier

A computing potentiometer is the simplest form of multiplier. It will
multiply a varying voltage by a constant less than or equal to unity.

To form the product of two varying voltages special units have to
be designed. Many forms of these are available but broadly they may
be classified as the servo-multiplier type or the electronic multiplier

type.
+1MU. 47V

Servo

€9 = XYM.U..
Fig. 5.1

Servo-multipliers are based on the feedback principle (see Fig.
5.1). The multiplier consists of a servo-driven follow-up potentio-
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meter, F, and several multiplier potentiometers (three, 4, B, C, have
been shown in Fig. 5.1). The wipers of these potentiometers are
mechanically ganged together, indicated by the dotted line in the
figure.

If an input signal X M.U. causes the feedback potentiometer
wiper to rotate 6 radians, then

= X. (5.1)

Al

Thus if signals + Y and — ¥ M.U. are applied as shown, the output
of the wiper of potentiometer A is

=Y — xrmu. (5.2)
T

The potentiometers B and C may also be supplied with inputs, say
+Uand —U and +V and —V, to provide further products + UX
and + VX respectively. Sign inversions may be obtained by reversing
the polarity of the connections of the appropriate multiplying
potentiometers.

The static accuracy of the servo-multiplier is largely governed by
manufacturing tolerances on the potentiometers, these being sig-
nificantly small for most applications, but the most severe limitation
is the speed of response.

The range of frequencies at which the servo-multiplier will operate
accurately is rather low, although if only one of the functions X, Y
is of high frequency, this signal may be connected to the function
potentiometer 4 and the slower signal used as input to the servo.

The resistor R is a load compensating resistor, equal in value to the
load on the function potentiometer. If R were not present the loading
on the potentiometer 4 caused by the input resistor of the next
computing element would cause a small loss in the output voltage
from the multiplier. By loading the feedback voltage in an identical
way this type of error can be avoided.

Other errors may be due to short-comings in the electrical and
mechanical zeroing of the potentiometers F, 4, B, C.

Four quadrant multiplication is possible, though if it is not
necessary a sign reversing amplifier can be saved by arranging that
the servo is driven to the half of the function potentiometer that is
supplied with the ¥ signal.

Electronic multipliers have been designed in many ingenious
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forms, some of the more familiar types being the Quarter Square, the
Time-Division, the Logarithmic, the Photomultiplier, and the Hall
Effect. Basically each will give an output e, = —e e, M.U. where
e, and e, are the inputs. Usually the output is developed from a
computing amplifier having very low output impedance, while the
input impedance varies from one type of multiplier to the next.

The frequency response is much better than in the case of the
servo-multiplier and while accuracy was at one time a limiting
factor modern electronic techniques are now producing some very
accurate multipliers.

5.3 The Dividing Circuit
Division may be performed by inserting a multiplier in the feedback
loop of an operational amplifier. Figure 5.2 shows how this is done.

—eY ]
. Ly
XO_MQM /\> €o

Fig. 5.2

The signal X is fed to an input of a high gain amplifier through a
resistor R and another signal Y fed to one input of the multiplier.
If the output of the amplifier, e,, is connected to the second multiplier
input the output will be —e,Y from Eq. (5.1). This provides the
second input to the amplifier through a resistor R.
Assuming the grid of the high gain amplifier to be at earth
potential, u being very large, Kirchhoff’s first law gives
X _ %y _, (5.3)
R R

ie.

_X

= (5.4)

€o

In this way division of X and Y is achieved. From the last result it
is evident that Y should be greater than X, or else voltages greater
than one machine unit would result. However, this can be obviated
by compensating in the input resistors as in Fig. 5.3.
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—€oY
R, Y
X W ps
Fig. 5.3
In this case
R, X
ey = 22 5.5
=2y (5.5)

If X exceeds Y then make R, greater than R, by the same ratio.

5.4 The Squaring and Square Rooting Circuits

Other applications in which the multiplier may be used are those of
squaring and square rooting. For squaring, the multiplier is used
with equal inputs X the output being — X (see Fig. 5.4).

—X2?

X ]

Fig. 5.4

In square rooting the multiplier is used as a squaring device this
being placed in the feedback path of an operational amplifier as
shown in Fig. 5.5.

Fig. 5.5

Using a similar argument to that for the division circuit

X el
X _ e _y, 5.6
R R (56)
ie.
eo = VX (5.7)

Squaring devices may be produced other than by using a multiplier.
For instance a system of biased diodes may be arranged so as to
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produce a straight line approximation to a square law. This forms the
basis of most squaring units.

The generation of a quotient and of a square root are examples
of the implicit function technique. An implicit equation between
the input functions and the output function is solved. In the case
of division the equation solved is

X—eY=0 (5.8)
and for square-rooting
X-ée=0. 5.9
More generally the equation
Fle,, )+ X =0 (5.10)

where F is an arbitrary function covers a wide variety of implicit
functions. Figure 5.6 shows the basic circuit for this equation.

Fleo Y)

Fig. 5.6

Other forms of non-linear units are available, such as sine and
cosine resolvers, which perform these operations on any input volt-
age; diode limiting units; backlash and hysteresis units; relay
comparators; and arbitrary function generators. Although experi-
ments involving the use of these units are beyond the intended scope
of this book they nevertheless are extensively employed in many
branches of analogue computing.

5.5 Experiment 21. The Use of a Multiplier and Divider

The binomial expansion of 1/(1 4+ x) is 1 — x + x2 — x3 + ....
Obtain graphs of 1/(1 + x) and the first four terms in its expansion,
and hence show that errors of more than about 2 per cent of full
scale occur when these four terms are used to represent 1/(1 + x)
when x is greater than about 0-35.

1. The function x can be obtained as a linearly increasing signal
by an integrator with a constant input.

To allow a reasonable computing time for recording purposes, sup-
pose that a 10 s run is required. Then x must reach 1 M.U. after 10's,
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Thus let

where ¢ is problem time.
Two multipliers are used to provide the signals x? and x*. Further

sign reversing amplifiers may be needed depending upon the type of
multiplier used.

2. The basic computer diagram is shown in Fig. 5.7.

~1M.U,
1
1 x L x2 ' x:!_1| > 1- x +x2-x3
—-1MU. C > |-1
01 E —x2 ij
‘ X
Fig. 5.7

3. Record the output of amplifier 2 for a period of 10 s full-scale
calibration. Check the curve for accuracy using suitable values of x
intherange0 < x £ 1.

4. The function 1/(1 + x) can be generated using the method of
division already discussed, where the divisor is 1 + x and the divi-
dend constant equal to unity.

5. The basic computer circuit is shown in Fig. 5.8.

Fig. 5.8
Potentiometer 1 2 3
Setting 0-05 05 05

In order that the output of amplifier 1 does not exceed 1 M.U. a

signal 4(1 + x) is generated. To compensate for this the numerator
is made 0-5 using potentiometer 3.
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6. Record the output from amplifier 2 for a period of 10 s on the
same scale as the previous graph. Check the curve by calculation
using suitable values of x.

7. Compare the two curves and determine the point at which the
difference is 2 per cent of full scale.

5.6 Experiment 22. A Further Example on Division

The purpose of this example is to outline a method which may be
used when the divisor is zero at time ¢ = 0.

Consider the function y = (}sinf)/t. Obviously when ¢ =10
overloading might occur in the division circuit. This difficulty is
minimized by generating a function of the form Ke™* and adding
this to the divisor. When ¢ = 0 the divisor is of magnitude K'and the
exponential function diminishes at a rate depending upon the value
of a. It is usual to adjust a so that a voltage is provided until the time
divisor is built up. (Note: in a time of 4/a seconds the exponential
output will fall to under 2 per cent of its initial value.) The value of K
is made just large enough to prevent

overloading.
1. In order to obtain a reasonable 10
length of computing time generate 55
sin ¢ and ¢/10.
2. The extra term in the divisor (in +1M.U.
001

this case 0-01e~1%%) is formed from the
circuit of Fig. 5.9. Fig. 5.9
3. The complete circuit is

L
10
@ 4l 3 1
+1MU. |7
%w-oxe—m'

+1M.U.
Fig. 5.10
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Potentiometer 1 2 3
Setting 0-05 01 001

5.7 Experiment 23. Use of a Multiplier to Perform the
Square-Root Operation

When a heavy cable (W Ibf per unit length) is hanging in equilibrium
under the action of a horizontal force H Ibf as indicated in Fig. 5.11
it can be shown that

dy w dy\?
e (2;) J G4

Fig. 5.11

Assuming that the maximum value of y is 20 ft and that of dy/dx
is 2 obtain the graphs of y against x for values of

ﬂ,=1. 1 1

100> 200> 300°
H

The values of y and dy/dx when x = 0 are both zero.
1. If x = ¢ then the describing equation may be written

. W .
j= =1+ y%. (5.12)
H
2. The scale factors are
fory,
for y, 1.

3. The scaled equations are

T R
2 7), TNz 2Jo
Yo _j' _l(X') dt + (l) (5.14)
20~ 7), T10\2 20),

where o = W/H.

and
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Speeding up by a factor of 10 these now become
(" 1, (3 y'
= —| —100 [{-+ || dT + (= 5.15
o= Lol ) e+ ), e
y )

T
Ie | Dar+ (2 (5.16)
20 s 20 20/,

where the dots denote differentiation with respect to T.
4. The computer diagram is

N <

Potentiometer 1 2
Setting 100 0-25

5. The theoretical solution of Eq. (5.11) is

y=£ coshv—Vx—l.
w H

5.8 Experiment 24, Solution of Mathieus’ Equation

This equation describes the behaviour of many physical systems
including wave guides, frequency modulation and sinusoidally
excited mechanical systems. The equation may be expressed in many
different forms one of which is
2
Z—Fy + (a — 2b cos wt)y = 0. (5.17)
The case in which ¢ = 2b, w = 2 and 0 < a £ 5 provides some
interesting studies of stability and instability. In the equation the
initial conditions are takentobey = 1 and y = 0,
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1. The equation now becomes
 j4a(l —cos2t)y =0 (5.18)

from which it can be seen that it is necessary to generate a function
x = 1 — 2 cos 2t. An accurate method of doing this is by solving a
differential equation, thus if

x=1-—cos2t (5.19)

then
x = 2sin2¢ (5.20)

and
X =4cos2t =41 — x). (5.21)

As the maximum numerical values of x and x are 2 the scale factors
are % in both cases.
The scaled equations are

% _ _f(ﬁ - 2) dt + (’_‘) (5.22)
2 0 2 2 0

‘ .
Yool Tar+ (). (5.23)
2 o 2 2/,

2. As the maximum value of x is 2 the maximum values of y and
y may be estimated from an examination of the equation

V+2ay =0, (5.29)

and

y =1,y =0at ¢t = 0. This has a solution of the form
y = cos \/2at (5.25)

whence the maximum value of y is 1 and that of y is \/ 10. However,
as has been stated, some of the solutions of the problem are unstable.
A larger maximum value of y is therefore advisable. Let this maxi-
mum value be 5. The maximum value of y will now be 5\/ 10. Take
this as 20. The scale factors for y and y are 1 and 54 respectively.

3. The scaled equations are

. t . o
Yo 82XV (2 (5.26)
20 0225 20/,

N y
[l e

Wi

B.A.C.T.—6
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4. The computer diagram is

7 ¥
io N 10 5
=% 2

10 x
FIMU.

[STR.1

Fig. 5.13

5. The potentiometer settings are

Potentiometer: 1 2 3 4 5
Setting: 2 04 02 04 02
20
6. Perform the static check and obtain the graphical results

which are as shown in Fig. 5.14.

5.9 Further Exercises

1. Water flows through a circular orifice of radius r ft from the
side of a cylindrical tank of radius R ft. The velocity of flow is given
by v = /(2gh)ft/s where h ft is the height of the surface of the water
in the tank above the centre of the orifice.

Show that the equation describing the rate at which the surface

is falling is
dh r\?
== 2gh).
dt (R) V@gh)

If R=15 and & = 100 initially, show how A varies with ¢ for
r =01, 02,03, 04.

2
[The theoretical solution is \/'h =10 — 4t(1—2) , taking g = 32.]

2. Set up a suitable circuit to examine the variation of v with ¢
for the equation dv/dt + Av® — w?r = 0 where

t
(i r=| vds, (ivyatt =0,v=0and r = 05,
. 0 . (v) Max. value of v = 2 x 104,
(i) w=2x 10% (vi) 075 x 107% < 4 < 2:5 x 1074,

(i) 0<r<1,
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il
i

a=136

Fig. 5.14 (o)

;\vﬂ\/ /

—5 1

Fig. 5.14 (b)

‘11’;\\//'\\/[\\//\\/\\//\\/\\//\

a=04
Fig. 5.14 (¢)
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By varying A within the defined limits obtain the type of v-# curves
illustrated in Fig. 5.15.

2 % 10*
A=075x 10*
A=15 x 10~
A=2x 10-*
v
05 x 10-*s 10-*s 1:5 x 10~%s

t

Fig. 5.15

3. An important equation occurring in the theory of feedback
oscillators has the form

y+wo* =Dy +y=0.

This is known as Van der Pol’s equation. For small (but arbitrary)
initial values of y and y the steady state solution is a periodic wave
form, varying in character with different values of y. Assuming the
maximum numerical values of y and y to be 2 and 4 respectively,
show that the machine equations are

b= - 13+
o)

Obtain graphs of y against ¢ and y against y [an X-Y recorder is
essential in this case] for values of u equal to 0, 0-4, 2. In these
experiments use (§)o = 0 and (), = 0-02. In the case of the phase
plane plot (i.e. y against y) note that the solution is always limited
by a definite bounding curve. This is known as the Limit Cycle and

N
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=2

2

Fig. 5.16 (d)

is of great importance in the examination of the stability of oscillatory
circuits. For a given value of u the same limit cycle is obtained ir-
respective of the initial condition values. Typical results are as shown
in Fig, 5.16.



CHAPTER 6

The Use of Transfer Functions

6.1 Transfer Functions

In the study of equations representing physical systems, it is often
convenient to consider the relations among the input and output
variables of the system. For linear systems these relations are ex-
pressed as functions known as Transfer Functions.
Consider, for instance, a stable system governed by the equation
d*x dx

aﬁ + b:i? + cx = f() 6.1)

where b/a is positive, and assume all initial conditions to be zero.
Taking Laplace transforms of both sides of Eq. (6.1) produces the
algebraic equation

(as* + bs + o)i(s) = fis) 6.2)

where s is the Laplace transform variable, in general complex, and
%(s) and f(s) are the Laplace transforms of x(¢) and f(t) respectively.

Students unfamiliar with the technique of the Laplace transforma-
tion are referred to any standard mathematical text on this subject.
An adequate account may be found in Chapter 1 of Analog Computa-
tion by A. S. Jackson.

The function

as® + bs + ¢

is called the characteristic function, and the equation
as’ +bs+c=0 6.3)

the characteristic equation (corresponding to the homogeneous case
of Eq. (6.1)). The roots of Eq. (6.3), which may be complex, deter-
mine the form of the complementary functions in the solution of
Eq. (6.1). For example, if the two roots are s = s, and § = s, the
complementary function is of the form Ae** + Be**', A and B being
constants.
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Since Eq. (6.3) is algebraic in s it yields the ratio

%(s) — 1
f(s) as®+bs+c 6.4)

The function on the right-hand side is the transfer function relating
%(s) and f(s) and is the ratio of the Laplace transform of the output
of the system divided by the Laplace transform of the input (or
driving function). Throughout this chapter, Y(s) will be used to
denote a transfer function. In the case of Eq. (6.4),

_(s)
y = 6 .

Thus Eq. (6.1) may be represented as shown in Fig. 6.1 by a block
corresponding to the transfer function, with f(s) as input and x(s)
as output.

1 1 x(s)
¥s) = as* + bs + ¢
Fig. 6.1

It is to be noted that a transfer function gives no account of the
initial conditions of an equation; these were assumed to be zero
in the formulation of the transfer function.

When the driving function f(¢) is sinusoidal, the particular integral
of Eq. (6.1) is also found to be sinusoidal, having the same frequency
as f(¢) but differing in phase and amplitude from it. If, for instance,

f(#) = Csin wt (6.6)
then the particular integral takes the form
x(t) = Dsin(wt + ¢) 6.7)

where ¢ is the phase difference between f(¢) and x(¢) and C and D
are constants. Other forms of input may usually be expressed as a
Fourier series of sine and cosine terms. Hence it is important to study
the behaviour of a system when it is subjected to sinusoidal inputs.
In the solution of an equation representing a stable system the
particular integral is essentially the only part left after a large time
t has elapsed; for this reason it is termed the steady state solution.
One way of measuring the performance of a system is to ¢xamine
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the steady state solution of the describing equation for driving
sinuscids covering a whole range of frequencies. In other words the
dependence of D and ¢ on w is observed. This is known as the
sinusoidal steady state frequency response, or more usually, the
frequency response.

Mathematical convenience is achieved by using a complex driving
function of the form

f()) = Ce’™* (6.8)

= C(cos wt + j sin wt), 6.9)
where j = \/—1.
The imaginary part of this function is Csin wt and the resulting
complex steady state solution is He/**, where H is complex and

He'®" = |H[{cos (wt + arg H) + jsin (wt + arg H)}. (6.10)

Comparison of the imaginary part of this solution with the right-
hand side of Eq. (6.7) gives

D = |H| (6.11)
and
¢ = arg H. (6.12)

Consequently, the variation of D and ¢ with @ can be established
from the complex steady state solution,

If the Laplace transform solution of Eq. (6.1) is pursued with
Sf{t) = Ce’, the resulting steady state solution, x.(?), is found to be

® Ce™ 6.13)
X (t) = — . .
a(jw)* + bjo + ¢
Thus
Xull) ! (6.14)

Ce™  a(jo)? + bjo + ¢
Equation (6.14) determines how the ratio

steady state solution

driving function
varies with frequency. Clearly, this may be obtained by replacing s
by jo in the transfer function Y(s), giving

1
a(jo)* + bjo + ¢

Y(jo) = (6.15)
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This is called the frequency-domain transfer function. This may be
written in the exponential form

Y(jo) = Glw)e!*® (6.16)
where
G(w) = |Y(jo)|
magnitude of sinusoidal output
= : : I 6.17)
magnitude of sinusoidal input
and
$(w) = arg Y(jow)

= (phase angle of output) — (phase angle of input). (6.18)

G(w) and ¢(w) are the gain and phase characteristics respectively
of the transfer function. Consideration of these at various angular
frequencies w will determine the frequency response.

Although the example quoted above deals with a second order
differential equation, transfer functions are obtained in the same
way for linear differential equations of any order and the definitions
of G(w) and ¢(w) given in Eqs. (6.17) and (6.18) remain valid. In
each case the transfer function Y(s) is the ratio x(s)/f(s).

6.2 Simple Block Diagrams

As mentioned earlier, a system governed by a differential equation
may be represented diagrammatically as in Fig. 6.1 by a block, or
black box, consisting of the transfer function ¥{(s) with input f(s)
and output %(s), the transforms of the input (driving) function and
the output function (solution) respectively. More complex systems
are usually divided into several distinct sections, individually de-
seribed by a differential equation of reasonably low order, and each
represented by a transfer function. The product of the individual
transfer functions is the overall transfer function. For instance, if two
transfer functions, Y,(s) and Y,(s), are linked to their corresponding
input and output transforms by the equations

21(8) = Y1(s) (s (6.19)
X2(8) = Y3(8). X4(s) (6.20)

then the resulting equation relating the input transform f,(s) and
the output transform %,(s) is

%2(5) = Y,(5) Y2(9)f1(s). (6.21)

and
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Hence

X,(s
29) _ Y(s) = Y,(s)Y(s). (6.22)

Fi(®
Any number of transfer functions may be multiplied in this way.
Schematically the black boxes representing the various transfer
functions are connected in cascade as in Fig. 6.2. For linear systems,

VAG) w6 | %3(5)

Yi(s) Y2(s) |f—w—o

Fig. 6.2

the order in which Y,(s) and Y,(s) occur is not important so long as
the signal represented by %,(s) is not required. In connecting blocks
in this way it is important that one block draws no energy from the
preceding one. As far as actual computer circuits are concerned, this
implies that electrical loading does not occur. In practice the loading
is usually kept down to negligible proportions.

In systems which employ feedback, the output may be passed
through a further block to an error sensing device—usually the
input grid of an operational amplifier and compared with the input
function. Figure 6.3 shows the block diagram for a simple feedback
system.

%1(s)

/o,

] Yf(-‘)

Output

Yb(S)

Fig. 6.3

Y((s), Y,(s) are the transfer functions of the forward path and
feedback path respectively, and the error device C algebraically
sums the inputs to it with the signs shown; that is

e = f(s) — %,(5). (6.23)

%o(s) = Yy($)%(() (6.24)

But

and
%1(8) = Yy(s)e. (6.25)
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This gives the overall output/input relation

MO NO (6.26)
F® 14 Y()Yy(s)
Y,(s), Y (5)/[1 + Y((s)Yy(s)] are termed the open loop and closed loop
transfer functions respectively between %,(s) and f(s).

6.3 The Use of RC Networks to Simulate Transfer Functions

Many methods are available for setting up transfer functions on a
computer. One of these is the use of complex RC networks as the
input and feedback impedances of an operational amplifier.

Let Z,, Z, represent the complex impedances in the feedback and
input paths of Fig. 6.4. As before, assuming an earth potential

oo 7, |i/\-'
e

Fig. 6.4

exists at the amplifier grid, it may be shown that

&) _ _Z9) (6.27)
€(s) Z(s)
where éy(s) and é(s) are the Laplace transforms of the output and

input voltages respectively.
Thus

_Z/9)
ok Y(s). (6.28)

The impedances of a resistance R and capacitance C are R and
1/Cs respectively. Hence, for the circuit of Fig. 6.5
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)"(s) = _e-BS:g_) = —i
é(s) 1/Cs
= —RCs (6.29)
or
&y(s) = — RCsé(s). (6.30)
On taking inverse transforms
de,
eo(t) = —RC ., 6.31
o(®) 5 (6.31)

The transfer function is — RCs and the operation performed is
pure differentiation with gain — RC. This result may be arrived at
using the elementary method given in Chapter 1 for the integrator.

The differentiating circuit, as it is shown in Fig. 6.5, is not of very
great practical use, since, if an unwanted noise signal of high fre-
quency content is present along with the true signal, the output of the
differentiator inherits this noise multiplied in magnitude by its
angular frequency. The resulting pen recorder trace may exhibit a
large amplitude jitter superimposed on the correct solution. In addi-
tion, amplifiers connected in this way are liable to run into satura-
tion and instability.

Methods of minimizing these difficulties are based on the filtering
off of the high frequency components of the signal and lead to
approximate forms of differentiation. Details of this can be found in
Experiment 25.

Another commonly occurring circuit is that of Fig. 6.6. This

R,
VAWV
" C
R,
€ O—VVV\M——Q—*O €
Fig. 6.6

represents the simple lag transfer function

G
1+ Ts

Y(s) = — (6.32)

where G = R,/R, and T = R,C.
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The result is easily obtained using Eq. (6.27)

Z, =1 J.+Cs = R
R, 14+ R,Cs
Zi=R1
. R,/R
Y(s) = — 271 6.33
© 1 + R,Cs (633)

T is called the lag time constant in seconds, and the transfer func-
tion represents the output/input relation between two variables
ey, e; satisfying the first order differential equation

de,
T2 + ey = —QGe;. (6.34)
dt

Other simple transfer functions and their circuits are shown in
Fig. 6.7.

6.4 Checking the Accuracy of Transfer Functions

The use of transfer functions in analogue computation involves just
as much caieful checking as do the normal methods for solving
differential equations. These checks may be carried out by ascertain-
ing that the gain and phase curves for each transfer function block
are correct.

Measurements are taken of G(w) and ¢(w) for sinusoidal inputs
of known character over a wide range of frequency, and the results
compared graphically with the calculated values. The two should
agree to within the degree of accuracy involved in the computing and
measuring equipment.

It is customary to plot G in decibels (i.e. 20 log;, G) and ¢ in
degrees on linear scales against angular frequency w on a logarithmic
scale. The plots are termed Bode Plots.

Another method of presenting the same information is to plot
G against ¢ in polar form—called a Nyquist Plot—in which case
margins of stability in gain and phase are more easily abstracted.

Other methods of testing transfer functions include the transient
response and impulse response techniques.

In the former a step function is applied to the input of the transfer
function and the output/time graph recorded and compared against
the calculated, while in the latter the input is an impulse function.
Essentially these two techniques are used to analyse the system
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Circuit Y(s) Relations
R,
K~ __G c="FR
1+ Ts R,
" A i T = R,C
R,
~ GST G = R,C
SAAAA l + 1Is —
P Rx c —e: T - RIC
C R, o .
_G(1 + Ts) = R.C
& R, eo, S T = R,C
R,
. _R,
—G(1 + Ts) Ry
€ R, €o T = RIC
6o 1
C’R,R,
T = 2R,C
— (R, + R3)
G(1 + Tys) R,

T+ TNl + T
(1 + Tys) 38) I - R,R4(Cy + Cy)
R, + R,
Tz = RZCI
T3 = R3C2

Fig. 6.7
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under test in the time domain, while the Bode and Nyquist plots
are contained in the complex frequency domain. A correspondence
may be set up between the frequency response and the impulse
response and vice versa so that information on the system in one
domain can be transformed into information in the other. Discussion
of this is beyond the scope of the present volume.

The ideas put forward so far are now enlarged in the following
set of experiments.

6.5 Experiment 25. The Differentiator

Use the three differentiating circuits of Fig. 6.8 to produce the
derivative of the function e™*/2,

C1
R R R
C C C .
o iw<>wla:ﬂ W[Eg]“—l 2 I
@ ©

®
Fig. 6.8

The three types of differentiator shown consist of pure differentia-
tion (a), and two approximate circuits using RC networks (b) and
(c).

1. The circuit to produce the function e™*/2? is obtained as in

1 etz
b0

—1M.U.
Fig. 6.9

Fig. 6.9. The function required is regarded as the solution of the
differential equation

(E + 4z =0, (6.35)
dt
withz=1latr=0.
Potentiometer 1 2

Setting 0-5 10
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2. In Fig. 6.8(a) the operation of the circuit is

de;
= —RCZ 6.36
€9 ai ( )
and its transfer function,
Y(s) = —RCs. (6.37)
From Eq. (6.36) it will be seen that on replacing s by jw,
G(w) = |Y(jo)|
= RCw (6.38)
and
#(w) = arg Y(jow)
= —90°. (6.39)
The gain M in decibels (db) is defined as
M(w) = 201og,, G(w). (6.40)

Substituting for G and evaluating M at  and 2w gives

MQ2w) — M(w) = 2010g,, 2w — 201log,, @
= 20log,, 2
= 6 db approximately.

This is true for all angular frequency w, and hence the gain-frequency
plot for the differentiator increases at 6 db per octave. For example
ifRC=1landw = 1then M = 20log 1 = 0 db, and when o = 2,
M = 6db.

The phase characteristics shows a constant phase difference, the
output lagging the input by 90 degrees.

Unwanted noise signals are always present in analogue computers
and they may well have a high frequency content. Because of the
linear dependence of gain on frequency these signals will be amplified
by a factor @ when they emerge from a pure differentiator. Thus
while their amplitude forms an insignificant part of the true signal
on the input side this may not be so at the output. The higher the
frequency of the noise signal the larger will be the magnitude of the
undesired signal, thereby causing distortion of the true output.

Another difficulty encountered with this ideal circuit is instability
caused by using too high a capacitance in the input arm. Especially
with computers using plug-in components, the operator should check
that the value of C is kept to within the value stated in the manu-
facturer’s rating of the d.c. amplifier.

B.A.C.T.—7
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Choose RC = 1 and perform the operation y, = g-t(e"/z) and

record y,.
3. In Fig. 6.8(b) the transfer function is

RCs

¥(s) = —RCs
©=-1"Trec

(6.41)

At low frequencies this approximates to — RCs signifying perfect
differentiation (see §6.3 Eqs. (6.30) and (6.31)) while at high fre-
quencies it becomes R/R;, a constant gain factor.

Choose (i) RC = 1, (ii) R,C = 0-01.

Basically the time constant R,C must be chosen to be small
compared with the other time constants occurring in the simulation.
In this case R;C <€ RC. Usually the time constant is optimized so
as to reduce the spurious noise level to a minimum while not
interfering significantly with the true differentiation at low fre-
quencies.

A disadvantage of this method is the constant gain at high
frequencies.

. —s
Perform the operation y, = — (7 *?) and record y,.
P ya 1+ 0_013( ) V2

4. In Fig. 6.8(c) the transfer function is

_ —RCs
(1 + R,Cs)1 + RC,s)

Y(s)

This circuit exhibits the advantages of () and also a diminishing
response at high frequencies when

-1

Y(s) = .
© R,Css

The gain-frequency characteristics of the three circuits are shown in
Fig. 6.10 for comparison, the values of the constants being taken as

RC =1, R,C=RC, = 00l.

The actual values of R, Ry, C and C, will depend on whether the
computer used is of the fixed component or plug-in type. Care must
be taken to ensure that any capacitor placed in series with the input
of an amplifier is kept to a minimum, or instability may result.
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60 -L ————————————— { (@)
Gain :
(db) |
401 : ®
: |
' |
!
201 :
1 |
! t
L\
10 100 100 10 10%
Frequency (rad/s)
Fig. 6.10

6.6 Experiment 26, The Simple Lag Transfer Function

Examine the frequency response of the transfer function 1/(1 + Ts)
where 7 = 01 s.

1. The circuit to produce a transfer function 1/(1 + 0-1s) is
shown in Fig. 6.11. With this arrangement,
R 1
R, (1 + RCs)
Choose R, Ry, Cso that R/R, = 1 and RC = 0-1.
2. Calculation of Frequency Response. The steady state response

Y(s) = (6.42)

R

Fig. 6.11

of the transfer function to sinusoidal inputs, that is, the frequency
response, consists of the graphs of gain and phase plotted against
frequency (the Bode plot).

If e; = A sin wt then
& (jw)
é(jw)

Glw) =
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IR S D

"+ 0w Jd + 0010 (6.43)
and the gain in decibels is therefore
= —10log;, (1 + 0-0lw?). (6.44)
The phase angle
1
$() = arg (i+—01ﬁ>)
= —tan" ' 0-lw. (6.45)

For low frequencies 0-0lw? can be neglected compared with unity
and then G = 1 and M = 0 db. For high frequencies 0-01w? is large
compared with unity and then G = 10/w and M = 20 — 20 log,, @
db approximately. The latter gives a straight line graph if o is
plotted on a logarithmic scale passing through the point M = 20,
@ = 1 and has a slope of about —6 db per octave.

Calculate M and ¢ over the range w = 1-500 rad/s and plot M
against w on graph paper using a linear scale for M and a logarithmic
scale for w. A useful spacing of points is obtained by evaluating
Matw =1, 3,7, 10, 30, 70, 100, 300 and 500 rad/s.

The lines M = 0 and M = 20 — 20 log,, w are asymptotes to
the graph. Their point of intersection is called the break point
and the frequency at which this occurs, w,, the break frequency.
In general this occurs when w = 1/T. For the case in question,
w, = 10 rad/s.

Simple calculation will show that the true curve is 3 db below the
break point at the break frequency and that, when 0 = 4w, = 5
rad/s, M = —1 db approx., and, when ® = 2w, = 20 rad/s,
M = —7 db approx. These values together with the two asymptotes
allow for quick drawing of the Bode plot for any simple lag.

No such simple process is available for the phase diagram
which is plotted linearly in degrees against @ on the same logarithmic
scale as in the gain plot. It will however be noticed from Eq. (6.45)
that ¢ = 0 for low frequencies, is —90° for high frequencies and is
~45° at the break frequency (see Fig. 6.12).

3. Measurement of Frequency Response. Apply sinusoidal inputs
to the lag network over the same frequency range as given above and
record the output using a transfer function analyser.

This unit provides the sinusoidal signal, called the reference signal,
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1 10 1 10
4 T T 7 5
o] X iy ol T I,
w(radfs) ' w(rad/s)
]
10 TS I '
M(db) 4
20 —op° ]
Fig. 6.12

and can measure the ‘in phase’ and ‘quadrature’ components p and
q respectively, of the output of the network under test. Tabulate p and
g against .
If a is the amplitude of the reference signal (i.c. e; = a sin w¢) then,
G = Y@ +4%)
a

¢ = tan™! (§> (6.47)
14

from which the Bode plot may be constructed.

(6.46)

and

4

OSCILLATOR TRANSFER i COMPARISON
FUNCTION | UNIT
i BLOCK I
asin wt €o = p sin wt -+ g cos wf
Fig. 6.13

4. Compare the resuits for the calculated and measured responses.
They should agree closely.

5. If a transfer function analyser is not available, students may use
a low frequency oscillator to provide the sinusoidal excitation or
indeed an oscillatory circuit using computer components (see Experi-
ment 9). The adjacent channels on a pen-recorder provide a means
of recording and comparing in amplitude and phase the input and
output signals, a separate computer run being required for each value
of w.
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6.7 Experiment 27. The Quadratic Transfer Function

Set up a circuit to produce the transfer function 20/(20 + 4-2s + 5?)
and produce calculated and measured Bode plots.

1. The quadratic transfer function occurs frequently in the simula-
tion of linear systems, e.g. the approximate response of a rate gyro.

Its general form is

2

2 . 6.48
w? + 2w,s + 5% (6:48)

Y(s) = @

This describes how ey/e; varies with frequency when e, and e; are
defined by the equation
d’e, de, 2 R
— + 2w, —= + whe, = wle; 6.49
e ¢ 5 0 (6.49)
With eo = 0 = deo/dt att = 0.
2. The gain of the transfer function (6.48) in decibels is

M(w) = 20 log,, [
i ”
= 20 log,, l:\/[(wﬁ — wz); T 4(:2w‘,’;w2]] (6.50)
and the phase angle
(@) = —tan~t 2O (6.51)
‘l—-w
Note that for w < w, Eqgs. (6.50) and (6.51) reduce to
M(w) =0 (6.52)
and
¢(w) = —tan~! (Ziw) = 0. (6.53)
When 0 > o, ’
M(w) = 40 log, (%) (6.54)
and
$(w) = —tan™! (2{0),,)
-
= —180° approximately. (6.55)

Relations (6.52) and (6.54) give the low frequency and high fre-
quency asymptotes to the M- curve, the latter being a line decreas-
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ing at 12 db per octave, while Egs. (6.53) and (6.55) provide the
initial and terminal values of ¢.

For values of o near w,, the gain curve exhibits a resonance peak
when the value of { is small. The magnitude of this peak tends to
infinity at @ = w, when { tends to zero. In addition, it is seen from
Eq. (6.51) that the value of ¢ at ® = w, is —90° except when { = 0.

The foregoing discussion enables some of the characteristics of the
Bode plot to be quickly obtained and used at least to check the
computed curves.

In the present example w? = 20 and 2{w, = 4-2 giving w, = 4-47
rad/s and { = 0-47. Put these values into relations (6.50) and (6.51)
and calculate M and ¢ against @ over the range w = 1-500 rad/s.
Plot the curves on linear-log graph paper.

3. By means of the method described in the previous experiment
determine the Bode plot experimentally. The circuit of Fig. 6.14 may
be used for this purpose.

Rs

¢; Rl 1 Rz €o
e

Fig. 6.14

This circuit forms a good example of the use of complex imped-
ances in nodal analysis. Using Kirchhoff’s first law and assuming
an earth potential at the amplifier grid G,

e.—eb+eo“éb_ﬁ_clsgb=() (6.56)
R1 R3 RZ
and
&4 Costy = 0 (6.57)

2

where é;, é,, &, are the Laplace transforms of the voltages e,, e; and e,.
Solving for &, in terms of &, gives

€(s) _ Ry 1

ei(s) Rl 1 + (R2 + R3 + B_;R_i_s)czs -+ C1C2R2R3S2

(6.58)

1
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If for convenience R; = R, then

f?o(s) - _ 1
éqs) 1+ (Ry + 2R;)Cys + C,C,R R,s%

(6.59)

This is to be compared with 20/(20 + 4-25s + s?) giving the relations

(Ry + 2R,)C, = 021 (6.60)
and
C;C,R R, = 0-05. (6.61)

If C; = 0-50 uF and C, = 0-01 uF then

R, + 2R, =21 (6.62)
and
R,R, = 10. (6.63)
Solving for R, R,,
R, = 1M, R, = 10M.

The component values in this example have been carefully contrived.
In general, although extremely helpful in saving computer eouipment
and avoiding the necessity for awkward gains, this method has
certain disadvantages:

(a) The flexibility is decreased as far as system parameter changes
are concerned.

(b) The complex relations between the component values and
parameters often call for computational complexity.

(¢} Unusual component values frequently result from (). The use
of nomographs relating circuit components to parameter
values alleviates the second disadvantage.

Table 6.1 gives values of M(w) and ¢(w) from which the Bode

plot for the given transfer function may be obtained.

6.8 Experiment 28, The Synthesis of Transfer Functions

In a certain servo-mechanism the transfer function between the

Laplace transforms of the output variable 8, and the error signal ¢ is

= 05 . (6.64)
s(1 + 0:2s)(1 + s)

O:IIOQ'

Set up this transfer function using the RC network method and
test it for frequency response.
1. It has already been mentioned that lincar transfer functions
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TABLE 6.1

w (rad/s) 1 3 7 10 30

M(w) 0-238 1553  —6297 —13-098 —32-958

o (w) -0-2176 —0-8532 —-2-3495  --2:6581  —2-9993

o (rad/s) 70 100 300 500

M(w) —47-764  —53-969 —73-062 81937

B(w) —3-0811  —~3-0995 —3-1276 —3-1332

may be multiplied together and manipulated algebraically. Thus
relation (6.64) is equivalent to four separate blocks as shown in
Fig. 6.15.

05 5 1+ 025 1 +s

& 9 >

The response to sinusoidal inputs is as usual obtained by replacing
s by jw in Eq. (6.64) and similarly in each separate block of Fig. 6.15.
Table 6.2 shows G(w) and ¢{(w) for each block.

The term 0-5 has gain in decibels 20 log;, 05 = —6 and is con-
stant. The phase angle is also constant at zero. The graph corres-

TABLE 6.2
Block 1 2 3 4
1 1 1

G((D) 0-5 — - 2 / 2
@ v+ 004w*) /(1 + o)

() 0 —90 —tan™ ! 02w —tan" ! w
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ponding to the term 1/s has a gain slope of —6 db per octave and
cuts the zero db line when @ = 1. The phase angle is constant at
—90°. The graphs corresponding to both the terms 1/(1 + s) and
1/(1 + 0-25s) have M = 0 db as low frequency asymptote and have
a high frequency asymptote with slope — 6 db per octave. The former
has a break point at @ = 1 rad/s and the latter at = 5 rad/s. At
these frequencies the true response curve lies 3 db below the inter-
section of the asymptotes.

Figure 6.16 shows the Bode gain plot for each block together with
the overall response obtained by adding together the individual M
components. The curves are labelled according to the numbering of
the blocks in Table 6.2. The overall Bode phase plot may be obtained
by adding together ¢ values for each block in a similar way.

Frequency w(rad/s)

L3 5 10 100
Gain M(db) 0 k L > 1

—10-

—204

Overall

Fig. 6.16

2. To simulate the transfer function the following circuit can be
used.

h
¢
|
[

Block 3

Fig. 6.17

v Blocks 1 and 2

The values of resistance and capacitance are shown in megohms
and microfarads respectively. In fixed gain computers it may be
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necessary to utilize different values of these components, when the
following relations must be satisfied.

R,C, =2,

Ry/R, = 1 = Ry/R,, (6.65)
R,C, = 02,

R5C3 = 1.

For instance in a fixed component transistorized computer the value
of the capacitor may be 10 uF.

Then C;, = C, = C; =10, and it follows that R, = 0-2,
R, =002 = Ry and R, = 0-1 = R;.

3. Perform the frequency response test to determine the Bode plot
for 8,/e and check the graphs by using theoretical values.

6.9 Experiment 29, Simulation of Automatic Control

Set up a circuit to investigate the effects of step changes in the desired
output variable of a control system having a process represented by
the transfer function

() _ y(s) = 1 (6.66)
V(s) (1 + O-1s)(1 + 0-25s)
and governed by a three-term controller.
Controller 4 > Process 0>o
. Y(s) Output
Desired
output
Fig. 6.18

1. The object of an automatic control system is to hold a measured
variable such as temperature or pressure at some desired value.

This is achieved by comparing the actual value, 6,, with the
desired value, 6;, and producing appropriate action, ¥, from the
obtained error signal

0, =0, — 0, (6.67)

For example, if in a chemical process the desired temperature is
100° C and the measured temperature falls to 95° C, a controller
acts in such a way that more heat is provided and the temperature
increases. If the measured temperature rises above 100° C the
controller reverses its action.
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2. A controller can have several physical forms, e.g. pneumatic,
hydraulic, electrical, depending in kind on the nature of the con-
trolled variables.

There are three types of control action: (a) Proportional, (b) In-
tegral, (c) Derivative.

In (a) the action of the controller V is proportional to the error
signal 8,, i.e.

V = Kpb,. {6.68)
In (b) the rate of action, dV/dt, is proportional to 6,, i.e.
dv
2T =K, 6.69
T 1 (6.69)
or
t
V= K,J 0, dt. (6.70)
0
In (¢) action is proportional to rate of change of error signal, i.e.
v = Kk, %% (6.71)
dt

Transforming Eqgs. (6.68), (6.69), and (6.71) and assuming zero
initial conditions, the complete action of the controller in transfer
function form is

V= (KP + K + KDs)De. (6.72)
N

This is shown schematically in Fig. 6.19.

Kp >

= K, -
| x V=(Kp+ =1+ Kps )0
B, ‘S—' —>@>_< ( P s (3

A 4

Kps

Fig. 6.19

3. Using Eqgs. (6.67), (6.68) and (6.72) the following circuit may be
obtained to represent the control system.
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Amplifier number 1 is used as a differencing element to simulate
Eq. (6.67), amplifiers 2, 3 and 4 constitute the controller with an
extra gain of 10 provided in the summing amplifier number 5, and
finally amplifiers 6 and 7 represent the process dynamics.

1

Controller ! : Process
I
b

!
t
!
2 Oa
I '
|
| .

__&[

gl
<
\ ll—-«—o,.(—l M.U.)

Comparator

&
mﬂ)

Fig. 6.20

It will be seen that an approximate form of differentiation is used
(amplifier 4). The transfer function of this has already been discussed,
as have the simple lag circuits of amplifiers 6 and 7.

4. Representative values for the three controller constants are

0 = K, = 20, }

0 < K; = 100,
0 < K, < 25.

Thus potentiometers 1, 2 and 3 are set to record K;/100, K,/20 and
Kp/25 respectively. A gain of 10 is incorporated in amplifier 5
leaving amplifiers 2, 3 and 4 with gains of 10, 2 and 2-5 respectively.

In amplifier 4 this amounts to choosing values of R, and C, such
that

(6.73)

R,C, =25
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and ensuring that RC, is small in comparison with the lowest time
constant, 0-1 s. A value of about 0-001 may be tried.

Further, choose values of R,, R3, R, Rs and C,, C; to satisfy
the following relations

R, R,

(6.74)
R3C2 = 0'1,
R5C3 = 0'25.

5. Initially it is assumed that with 8, = 0 and 6, = 0 the controller
is acting to keep the actual output equal to the desired output. Any
input signal 6; will be regarded as representing a change in the
desired output. Investigate and record the following modes of control
using step changes in 0, to represent sudden changes in desired out-
put.

(a) No integral or derivative action (X}, K, both zero) using small,
medium and large amounts of proportional action (three
runs). Notice how as Kj is increased, the steady state error
(known as ‘offset’) is decreased whilst the output tends to
become more oscillatory.

(b) With each of the above use small and large amounts of integral
action (six runs). Notice that the offset is now eliminated at the
expense of stability.

(c) Use small and large amounts of derivative action with each
of the above (eighteen runs). Notice how this improves
stability.

6.10 Further Exercises

1. Differentiation can be performed using the implicit function
techniques rather than by RC circuits. Simple analysis of Fig. 6.21
will show that

sy s
&) 1+ sT

The advantages are

(a) Only standard computing units are used.

(b) The appropriate sign of the derivative is generated.

(¢) The break frequency 1/T is easily controllable and prior
knowledge of the noise frequencies is not necessary.
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Use this circuit to differentiate y = sin 4¢ for various values of T.
2. Set up a circuit to simulate the transfer function

1
s(1 + 0-1s)

Obtain the Bode diagrams for this circuit experimentally and check

them by calculation.
3. If a function of time 7, fi(¢), is delayed by T'seconds the resulting
function f(¢) is given by

Y(s) =

Jot) = f(t = T).
It may be shown that the transfer function representing the delay is
T 0(5)
o8

where s is the complex operator previously mentioned.
Replacing s by jw for sinusoidal inputs the gain

G(w) f 0(] a)) = 1 (constant)
and the phase
— Jo(jo)
$(w) = arg 7o)
= —oT

which is proportional to frequency. Now
s2T?  $373
-+

e ST =1 — 5T + —
6

which may be approximated to by the expression
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Significant errors arise in the fourth and succeeding terms if 5T is not
small. The following circuit (Fig. 6.22) has —(s — 2/T)(s + 2/T)
as transfer function. Use it to test the delay of functions

(1) fi=sin2t, Q) f, =1t
when T = 0-25s.

v

2

_ G-2n) .
Jo = G+ zm'f‘

2
T

Fig. 6.22

Circuits of more complex form can be produced to provide much
better approximations to time delays.

4. In the coplanar study of the homing of a guided missile steering
under the proportional navigation system the equations may be

Reference axis N Cotiision Point
For xy — xy n

Target

! Collision course
! Line of sight

— Initial line of sight
Reference axis

——

—

Fig. 6.23

reduced to the following simplified form

0 = Y(s)é Missile rate of turn

c ==—X—T—I;~£M Line of sight angle

R = R, — tVcosf, Range (missile to target)
X\ = VO cos 8, Missile lateral acceleration
X as desired Target lateral acceleration

(6o, R, are the initial values of 8 and R)
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Y(s) is a transfer function representing the missile dynamics. It
dictates the ability of the missile to perform the programmed steering
equation § = Ko.

In this problem take

K

1+ Ts

where 0 < K < 10 and T = 0-5.

Examine the miss distance (the value of X — X, um When R = 0)
for values of K equal to 01, 1, 2 and 10 for a 2g target turn, i.e.
X, = 64 ft/s2.

The maximum values of the variables are given in the Table 6.3
and a suggested circuit in Fig. 6.24.

The experiment should be performed for various initial heading
errors, i.e. (Xy — Xp)o.

If a constant signal is applied through an extra input to amplifier 1,

Y(s) =

TABLE 6.3

0 6 ° R R

1 rad 10 rad/s 0-1rad 20,000 ft 1000 ft/s

Xu Xy Xr Xz Xr — Xy

2000 ft 1000 ft/s 2000 ft 1000 ft/s 1000 ft

Potentiometer 1 2 3 4
. VeosO, (Xy— Xpo
Sett K/10 1/10T 0 M
cHing o1y 1000 1000
Potentiometer 5 6 7

Xr V cos 0, R,
1000 20,000 20,000

Setting

B.A.C.T.—8
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7 ~1MU.

Fig. 6.24

the effect of a bias in the measurement of sight line angle may be
investigated.

Amplifiers 1 to 3 represent the transfer function 0-1s/(1 + Ti)
in feedback form. A more realistic representation of the missile
dynamics is obtained by the inclusion in the circuit of a term
1/[1 + (s/w,) + (s/w,)?] immediately prior to potentiometer 1.
The use of RC networks to simulate these transfer functions is of
course acceptable.
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Equal coefficient rule, 18-20
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Feedback system, 79-80

Frequency response, 77-78
calculation of, 87-88
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Gain characteristic, 78
Guided missile, homing of,
100-102

Hawser, force developed by,
41-43
Hold circuit, 6-7

Impedance, feedback, 1
Impulse response, 82, 84
Initial condition, 6
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Machine equation, 9, 20
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Mathieu’s equation, solution of,
68-71
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36-39
Multiplier, applications, 64-74
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60
division using, 62-63
electronic, 60-62
servo, 60-61
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period of, 16
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Noise signals, in differentiator,
85
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60, 67-74
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Nyquist plot, 82, 84

Open loop transfer function,
79-80
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14-44
time, 45-59
Simple lag, 81
Simultaneous differential
equations (see Differential
equations)
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25-27
Square-roots (see Multiplier)
Squaring (see Multiplier)
Static check, 29-31
Steady state solution, 76
Successive integration, 16
Summer (see Amplifier)
Suspension problem, 55-58
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92-95
System performance, 76-77

Three-term controller, 96
Time scaling, methods of,
46-48
need for, 4546
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speeding up, 50-51
summary of, 48
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Transfer functions, checking Transient response, 82
accuracy of, 82-83
definition of, 75
in frequency domain, 78 Van der Pol, 72
overall, 78-80
quadratic, 90-92
simple lag, 81 Xenon poisoning in nuclear
synthesis of, 92-95 reactor, 51-53
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This is the only practical text to cover a first course in
analogue computing. Its purpose is to provide practical
instruction in the basic principles and its step by step
approach in guiding students through typical problems
for computer solution is unique. A set of 29 graded
experiments is used to illustrate points of basic theory
and practical techniques. The course covers selected
problems of the type likely to be encountered by students
of engineefing, mathematics, and science in universities
and technical colleges. To extend the students' ex-
perience further, exercises with answers are provided at
the end of each chapter. Problems are restricted to those
involving as few computer units as possible, thus obviat-
ing the need for large capacity computers.

The value of a standardized procedure of scaling is
emphasized by application to the very important field of
differential equations. The method of programming such
equations is introduced, methods of estimating the
approximate maximum values of problem variables are
outlined, and a routine programming procedure is laid
down. A simplified approach, avoiding the use of ad-
vanced mathematics, is made to the difficult topic of
transfer functions, and important aspects of industrial
computation are covered.
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